Skip to main content

Neuroinflammation and pathways that contribute to tourette syndrome

Abstract

Tourette syndrome (TS), a neurological and psychological disease, typically exhibit motor and phonic tics. The pathophysiology of TS remains controversial. Currently, the recognized pathogenesis of TS is the imbalance of neurotransmitters, involving abnormality of the cortex-striatum-thalamus-cortex circuit. Recently, clinical researches demonstrate that triggers such as infection and allergic reaction could lead to the onset or exacerbation of tic symptoms. Current studies have also suggested that neural-immune crosstalk caused by inflammation is also associated with TS, potentially leading to the occurrence of tics by inducing neurotransmitter abnormalities. Herein, we review inflammation-related factors contributing to the occurrence of TS as well as the mechanisms by which immune-inflammatory pathways mediate the onset of TS. This aims to clarify the pathogenesis of TS and provide a theoretical basis for the treatment of TS.

Introduction

Tourette syndrome (TS) is a neurodevelopmental disorder that begins in childhood and is characterized by numerous involuntary motor and vocal tics lasting over a year [1]. Approximately 0.3–1% of the population is affected by TS [2]. TS frequently co-occurs with attention deficit/hyperactivity disorder, obsessive-compulsive disorder (OCD), and other psychological problems [3, 4]. TS can affect daily life, severely affecting physical and mental health, causing a decline in academic performance, and even leading to social impairment.

Research on the pathogenesis of TS has involved the investigation of genetics; neurotransmitters; and environmental, immunological, and other factors [5,6,7]. Among these, an imbalance in neurotransmitter levels is one of the most recognized pathogenic mechanisms. Studies have shown that tics may result from the loss of inhibition of motor cortical neurons and dysfunction of the cortex-striatum‐thalamus‐cortex (CSTC) circuit [8,9,10]. As the main neurotransmitters of the CSTC circuit, dopamine (DA) and glutamate (Glu) have been shown to be associated with the onset of TS [11,12,13].

In recent years, increasing evidence has indicated that neuroinflammation is mediated by infections or allergic reactions during the pathogenesis of TS and other neuropsychiatric disorders [14, 15]. Studies have demonstrated that there is a subset of patients with TS in whom tic symptoms are induced by infections or allergic reactions [16, 17]. In addition, most patients with TS present exacerbated symptoms after pathogenic infections or allergic reactions [18, 19]. Some clinical and basic studies have focused on the pathogenesis of TS resulting from infections or allergic reactions.

How these abovementioned factors induce the development of TS is not clear. Therefore, here, we briefly review the mechanisms by which inflammatory responses triggered by bacteria, viruses, and allergens mediate an imbalance in neurotransmitters that leads to the onset of TS.

This article provides a narrative review focusing on inflammation-related factors contributing to the occurrence of TS and the mechanisms by which immune-inflammatory pathways mediate tic onset. A systematic literature search was conducted in databases such as PubMed and Web of Science, including studies from the past two decades on the relationship between TS and immune-inflammatory pathways. The following keywords were used: ‘Tourette syndrome’, ‘inflammation’, ‘immune’, ‘microglia’, ‘neural-immune crosstalk’, ‘anti-neuronal antibodies’, and ‘infection’. This review aims to integrate the current evidence on the immune-inflammatory mechanisms underlying TS pathogenesis.

Etiology

Bacterial infection

Among the multiple bacterial strains, streptococcal infection is considered a recognized trigger of TS. Studies have indicated that TS is likely related to prior streptococcal infections [20, 21]. Among the numerous types of streptococci, Group A streptococci (GAS) are the most closely associated with TS [22,23,24,25]. Group A beta-hemolytic streptococci (GABHS), the most common pathogenic strain of GAS in children, is associated with the onset of TS [26]. Studies have defined a separate category of TS known as pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS), based on the hypothesis that autoimmunity induces neuropsychiatric symptoms [18]. Among children diagnosed with PANDAS, exacerbations and relapses of tic symptoms were linked to GABHS infections [18, 19]. If the PANDAS theory is confirmed, it would support the idea that tic disorders are related to streptococcal infections.

Staphylococcus aureus can also cause worsening of tic symptoms in patients with TS, and its pathogenesis is related to the immune response during bacterial clearance [27]. Lung infections with bacteria, such as Pseudomonas aeruginosa, have been reported to cause the release of systemic cytokines and neuroinflammation, leading to behavioral changes in patients with TS [28]. Therefore, other bacteria that are expected to trigger TS are expected to be discovered in the future.

Viruses

The correlation between TS and viruses, such as enterovirus (EV), human immunodeficiency virus, herpes simplex virus, varicella zoster virus, cytomegalovirus, coxsackievirus B, and severe acute respiratory syndrome coronavirus 2, has been reported in multiple studies [29,30,31,32,33,34]. During the COVID-19 pandemic, tic-like behaviors emerged in young people, indicating that COVID-19 may also be associated with the occurrence of TS [31]. SARS-CoV-2, as a model of infection which could lead to neuroinflammation, may also play a significant role in triggering or exacerbating TS [35].

Other pathogens

Other pathogens associated with TS have also been reported, including Chlamydia trachomatis, Chlamydia pneumoniae, Mycoplasma pneumoniae, Toxoplasma gondii, and Borrelia burgdorferi. B. burgdorferi and M. pneumoniae have been reported to induce tic exacerbations [25, 36,37,38,39,40].

Allergic reactions

Many studies have suggested that allergies may cause the onset of TS [41]. The prevalence of allergic diseases is higher in TS patients than in the general population [17, 42, 43]. A meta-analysis reported that tic syndrome was related to allergic diseases, such as allergic rhinitis, eczema, asthma, food allergy, and allergic conjunctivitis; however, it was not related to urticaria, atopic dermatitis, or drug allergy [44].

Children with TS were found to have positive skin tests and higher serum IgE levels, mainly against inhalation allergens, such as dust mite combinations, indicating the occurrence of allergic reactions [42, 45]. When allergens are encountered, plasma cells produce IgE, and histamine is released when IgE reacts with the allergen. High IgE levels are thought to result in allergic reactions as well as excessive release of inflammatory cytokines [45], which would damage striatal dopaminergic neurons, causing the disruption of dopaminergic signals, thereby causing tic disorders.

Pathogenesis

Inflammatory factors

Pathogens cause neurotransmitter imbalances through the following mechanisms. They can damage neurons by activating T cells to produce inflammatory factors or B cells to produce anti-neuronal antibodies. Both these factors may lead to the onset of TS. A lack of Treg cells was found in patients with TS, which enhanced the elimination of the infectious pathogen. Pathogenic infections can lead to hyperactivation of the peripheral immune system and release of excessive inflammatory factors. These inflammatory factors may lead to the dysfunction of neural-immune crosstalk, which may cause an imbalance in neurotransmitters, such as DA and Glu, which can lead to tics. Pathogenic infections can also induce the production of anti-neuronal antibodies by activating B cells. Anti-neuronal antibodies interact with neuronal surface antigens and activate microglia, leading to the damage of dopaminergic neurons, ultimately resulting in TS.

Production of inflammatory factors mediated by activation of the peripheral immune system

Impaired immune tolerance to self-antigens in patients with TS might result from a deficiency of Treg cells in TS patients [46], which may reduce the ability to suppress self-reactive T lymphocytes. Subsequently, an overactivated autoimmune response enhances the elimination of infectious agents. When pathogens infect the body, overactivation of the autoimmune response leads to the massive release of inflammatory factors. Peripheral inflammatory factors can increase the permeability of the blood-brain barrier (BBB), possibly inducing a neurotransmitter imbalance by affecting microglia or astrocytes, which in turn lead to the onset of TS.

Lack of treg cells in patients with TS

A lack of Treg cells has been found in patients with TS, which might result in a lower ability to suppress self-reactive T lymphocytes, leading to impaired immune tolerance to self-antigens [46]. Self-reactive T lymphocytes play a role in defending against pathogenic infections and continue to be present in the peripheral immune cell repertoire [46]. Immune tolerance targets self-antigens and is maintained through various suppressive mechanisms. CD4(+) CD25(+) Treg cells, which inhibit self-reactive T lymphocyte responses to foreign antigens, can mediate peripheral tolerance to self-antigens [47]. The depletion of Treg cells increases the number of CD8 + T cells, enhancing the elimination of infectious pathogens [48]. In some cases, self-reactive lymphocytes can cause damage to the host [46].

Over activation of the peripheral immune system

Overactivation of the peripheral immune system has also been observed in patients with TS. Researchers have found an increase in the number of natural killer (NK) and CD8 + T cells, a reduction in CD4 + T cells, and a decrease in the CD4+/CD8 + ratio in patients [15, 49]. One study reported higher plasma IL-12 levels in patients [50, 51]. IL-12 has the ability to drive CD4 + T-cell differentiation into helper T (Th) cells and activate NK cells, indicating that the peripheral immune system of patients with TS is over-activated [52]. Another study indicated an increase in CD95 + Th cells in patients with TS, demonstrating that patients with TS present a hyperreactive immune state [53]. When CD95 (Fas) is activated, it induces cellular apoptosis to remove activated peripheral T cells through its interaction with the Fas ligand, which suggests an increase in peripheral immune activity [54].

Release of inflammatory factors

Pathogenic infections may contribute to the onset of TS, which is mediated by host T-cell immunity. Bacteria share epitopes with human self-antigens. When pathogens infect the human body, autoreactive T lymphocytes are activated, resulting in the development of autoimmunity and the inhibition of suppressive mechanisms [46, 55]. Subsequently, the suppressive mechanisms of Treg cells are overturned, and immune tolerance to self-antigens may be impaired, resulting in massive release of pro-inflammatory cytokines [56]. Higher serum levels of soluble CD14 were detected in patients with TS and bacterial infections [57]. Soluble CD14 stimulates the production of inflammatory cytokines that may increase bacterial resistance [58]. There are also studies showing that viruses stimulate the release of inflammatory factors, such as IL-6 and TNFα, in serum [59]. Previous studies have reported increased serum levels of pro-inflammatory cytokines, such as IL-6, TNFα, IFN-γ, IL-17, IL-12p70, and IL-1β in patients with TS, as well as IL-2 in those comorbid with OCD [15, 50, 51, 60, 61]. Pro-inflammatory cytokines in the serum may cross the BBB and affect microglia and astrocytes in the brain, inducing neurotransmitter abnormalities, which in turn, may lead to the development of TS. Hence, we speculated that pathogenic infections may result in a hyperreactive immune state in the human body, which may induce the onset of TS.

Dysfunction of neural-immune crosstalk

Peripheral inflammatory factors can increase BBB permeability, allowing them to cross the BBB. These inflammatory factors may lead to the dysfunction of neural-immune crosstalk through the activation of microglia or other pathways, potentially leading to an imbalance in neurotransmitters and contributing to the onset of TS.

The activation of microglia caused by inflammatory factors

IFN-γ, TNF-a, and IL-6 have been shown to be efficient at crossing the BBB, entering the cerebral vasculature or brain tissue [62,63,64]. The levels of IL-6 and TNF-α are upregulated in the brain tissue of rats with TS [65]. IL-6 and TNF-α damage the brain in different ways. TNF-α indirectly enhances the production of potentially neurotoxic metabolites, to disrupt brain development by adjusting neurotransmitter metabolism [66]. Microglia in the brain may be activated by pro-inflammatory cytokines from the serum, which may lead to an increase in neuronal excitability and the release of more inflammatory factors in the brain [64]. Recent studies have suggested that microglia play an important role in neuroinflammation, which is associated with tic disorders.

The activation of microglia in the brain mainly results from higher levels of chemokine ligand 5 (CCL5) in the blood, upregulated genes related to immunity, and a lack of histamine (HA). The following section provides a detailed description of the three pathways involved in microglial cell activation.

(1) Higher blood CCL5 levels: Pathogenic infections induce the overactivation of T lymphocytes [55]. CCL5, released by immune cells, such as T lymphocytes and macrophages, plays an important role in recruiting leukocytes to inflammatory sites. A previous study reported higher blood CCL5 levels in patients with TS [67]. CCL5 enters the brain by crossing the BBB and interacting with its receptors, C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 1 (CCR1). Neurological impairments may result from CCL5-CCR1-mediated microglial activation through the CCR1/TPR1/ERK1/2 signaling pathway [68]. CCL5 interacts with CCR5. The activation of CCR5 can promote neuronal pyroptosis via the CCR5/PKA/CREB/NLRP1 signaling pathway, which may cause neuronal impairment and induce the onset of tics [69].

(2) Upregulated genes related to immunity: One study reported upregulated hub genes, including intercellular adhesion molecule 1, C-C motif chemokine ligand 2, heme oxygenase 1, MYC proto-oncogene, and suppressor of cytokine signaling 3, in patients with TS [70]. Studies have found that the hub genes upregulated in TS are commonly related to immune and inflammatory pathways that involve the interleukin and interferon signalling pathways [70]. Another study also reported that the upregulated genes in the caudate and putamen of individuals are mostly immune-related genes, which are related to the activation of microglia and can induce the excessive release of inflammatory factors [71].

(3) The lack of HA: HA deficiency promotes the release of the inflammatory factors like IL-1β [72], while making microglia more susceptible to inflammatory challenge and promoting microglia M1 hyperpolarization. A lack of HA can also promote microglial activation, which has been proposed as a potential cause of TS. HA acts as an anti-inflammatory substance to inhibit lipopolysachharide (LPS)-stimulated exacerbated microglial responses via histamine H4 receptor activation and inhibit the release of IL-1β [72]. HA also regulates microglial functions [73]. Histidine decarboxylase (Hdc), an enzyme essential for HA synthesis, plays an important role in TS [72, 74]. A decreased number of IGF-1-positive microglial cells were found in Hdc-knockout mice [73]. IGF-1-positive microglia protect the brain. However, this protective function is weakened when the number of IGF-1-positive microglia is reduced. Consequently, HA deficiency renders microglial cells more vulnerable to inflammatory challenges mediated by LPS. Subsequently, microglia produce inflammatory factors that damage neurons and may lead to tics.

Microglia are divided into two types, namely M1-type and M2-type [75]. M1-type microglia, which are the classical pro-inflammatory type of microglia, release inflammatory factors and induce neuroinflammatory and neurotoxic responses [76]. All three approaches mentioned above can induce microglial M1 polarization. One study found that microglial M1 polarization may cause inflammatory impairment in striatal dopaminergic neurons [13]. Subsequently, dopaminergic signaling is impaired, which may lead to the development of tics. These results indicate that the cooperation between dopamine dysregulation and immune dysfunction may be the underlying cause of TS (Fig. 1).

Fig. 1
figure 1

Overview of microglia M1 polarization–mediated tic onset. The activation of microglia mainly results from three processes, including increased chemokine ligand 5 (CCL5) levels in the blood, up-regulated immune-related genes, and a lack of histamine (HA). CCL5 in the blood may enter the brain and interact with its receptors, C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 1 (CCR1). The activation of CCR5 promotes neuronal pyroptosis through the CCR5/PKA/CREB/NLRP1 signaling pathway. The activation of CCR1 may result in neurological impairments through the CCR1/TPR1/ERK1/2 signaling pathway. Both of these pathways may cause neuronal impairment and induce the onset of tics. Up-regulated genes related to immunity and inflammation, including C-C motif chemokine ligand 2 (CCL2), intercellular adhesion molecule 1 (ICAM1), heme oxygenase 1 (HMOX1), MYC proto-oncogene (MYC), and suppressor of cytokine signaling 3 (SOCS3), are related to the activation of microglia. The lack of HA may lead to a decrease in the number of IGF-1-positive microglia cells, which have the function of protecting the brain. As a result, HA deficiency increases the susceptibility of microglial cells to inflammation triggered by lipopolysaccharide (LPS). M1-type microglia are known as pro-inflammatory microglia. Microglia M1 hyperpolarization may lead to an increase in inflammatory cytokine levels and sustained neurotoxicity. Striatal dopaminergic neurons are then impaired, which may cause tic disorders, and tics may occur subsequently

Other mechanisms of neural-immune crosstalk dysfunction caused by inflammatory factors

Inflammatory factors contribute to tics through other pathways. Inflammatory factors may affect astrocyte-neuron metabolic coupling, or lead to dysfunction of the gut-brain axis, or may have an effect on the kynurenine pathway (KP) [29, 76,77,78]. All of these effects may disrupt the neurotransmitter balance in the brain, which may lead to TS.

Astrocyte-neuron metabolic coupling could induce TS due to neuroimmune interactions. Astrocytes exhibit a neurotoxic phenotype in response to immunological and inflammatory conditions [76]. Dysfunction of astrocyte glutamate transporter 1 results in its loss of function in the regulation of corticostriatal synapses and leads to pathological repetitive behaviors [12, 79, 80].

Dysfunction of the gut-brain axis can influence nervous system development, which may induce or aggravate TS [77]. Streptococcal infections have the potential to modify the composition of the gut microbiota in the human body [81, 82]. Differences in the composition of the gut microbiota may influence the brain-gut axis and alter neurotransmitter levels, potentially contributing to TS symptoms [83]. A higher abundance of Prevotella has been reported to increase the levels of inflammatory factors in the gut [84], which may cross the BBB and impair the nervous system through the inflammasome signaling pathway [85]. Increased levels of Odoribacter may result in a greater release of dopamine, leading to tics [81]. γ-aminobutyric acid (GABA), an inhibitory neurotransmitter, is reported to be produced by Bifidobacterium [86]. Bifidobacterium deficiency leads to a decrease in GABA levels in the primary sensorimotor cortex in patients with TS, probably causing allergies as well, thereby contributing to a higher risk of developing motor and vocal tics [87].

Neurotrophic infectious agents can activate tryptophan catabolism and increase the levels of pro-inflammatory cytokines, both of which may affect the neurotransmitter balance in the brain through the KP [29, 78]. Tryptophan is degraded to kynurenine through the KP, which is the main pathway for tryptophan breakdown [78]. These degradation products can act as N-methyl-D-aspartate (NMDA)-receptor antagonists, and have been reported to induce glutamatergic hypofunction and regulate neurotransmitters [88]. Kynurenic acid, the only known endogenous NMDA antagonist, blocks nicotinergic acetylcholine receptors at low doses [88]. The KP may contribute to glutamatergic hypofunction and block nicotinergic acetylcholine receptors, leading to tic disorders.

Anti-neuronal antibodies

Anti-neuronal and antinuclear antibodies have been found in the serum of patients with neuropsychiatric symptoms, such as TS [89,90,91]. Pathogenic infections, particularly streptococcal infections, may induce the emergence of anti-neuronal antibodies [92,93,94],. Streptococcal infections are thought to be associated with ABGA, as well as with TS [22, 27, 95, 96].

Anti-neuronal antibodies have been considered to cross-react with streptococci and antigens in the basal ganglia. The pathogenesis of TS-associated antibodies is speculated to involve cross-reactions between anti-neuronal antibodies and the basal ganglia. Researchers have proposed a mechanism underlying the immune response against streptococcal infections. The GAS cell epitope is similar to lysoganglioside-GM1 and neuronal glycolytic enzymes (NGEs) [97]. One study confirmed that antibodies against lysoganglioside-GM1 or pyruvate kinase (PK), a type of NGE, can react with the GAS cell epitope N-acetyl-beta-d-glucosamine [98, 99]. Therefore, when GAS infects the body, the anti-streptococcal antibodies produced react with neuronal surface antigens. We refer to these antibodies as anti-neuronal antibodies.

The cross-reactivity between IgG antibodies in serum from children with TS and brain tissue has mainly been observed in the CA3 subfields of the hippocampus, the basal ganglia, the cerebellum, and the dentate gyrus (DG) [100]. A few special neuronal surface antigens, such as dopamine-1 receptor (D1R), dopamine-2 receptor (D2R), tubulin, lysoganglioside-GM1, NGE, hyperpolarization-activated cyclic nucleotide channel 4 (HCN4), contactin-associated protein-like 2, the N-methyl-D-aspartate receptor (NMDAR), leucine-rich glioma-inactivated protein 1, the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor, and the γ-aminobutyric acid receptor-A/ the γ-aminobutyric acid receptor-B, have been shown to have more potential to bind with antibodies in patients with TS and related neuropsychiatric disorders [97, 98, 100,101,102,103,104,105,106,107,108,109,110,111,112],.

With GAS invading the human body, individuals generate antibodies that recognize specific neuronal surface antigens within the striatum; subsequently, the cross-reactivity of antibodies with the epitopes of the neuronal cells induces the impairment of neuronal function, such as brain reward circuits, ultimately causing tic disorders and other neuropsychiatric damage, which may explain the pathogenesis of TS [91, 113]. Specific neuronal surface antigens that react with antibodies in patients with TS remain ambiguous. Therefore, the priority is to identify new autoantibodies against the neuronal surface antigens [114].

Signaling pathways involving neural-immune crosstalk

Previous studies have shown that some signaling pathways are involved in TS-mediated neuroinflammation (Table 1). The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) signaling pathway, JAK-STAT pathway, and NF-κB pathway are crucial pathways involved in the processes of neuroinflammation resulting from the activation of microglia [115].

Table 1 Signaling pathways associated with TS mediated by neuroinflammation

CaMKII signaling pathway

The activation of calcium-calmodulin-dependent protein kinase II (CaMKII) has been linked to movement disorders, such as TS [99, 104, 107, 130]. CaMKII activation can be induced by anti-neuronal antibodies or NMDAR. CaMKII activation has been reported to be induced by the reactivity of antibodies against the neuronal cell surface and caudate-putamen. The activation of NMDAR allows Ca2+ and Na+ influx into cells, leading to the activation of CaMKII [131]. The activation of CaMKII can mediate inflammatory responses through the ERK/p65/STAT3 or Drp1/ROS/NF-κB pathways, and can also affect dopamine release through the regulation of tyrosine hydroxylase. The CaMKII/ERK/p65/STAT3 signaling pathway is closely associated with inflammation and induces neurotoxicity in dopaminergic neuronal cells [132]. The CaMKII/Drp1/ROS/NF-κB pathway also activates microglia towards pro-inflammatory M1 polarization after stimulation with LPS [116]. CaMKII activation leads to increased tyrosine hydroxylase levels and subsequent dopamine release. CaMKII also regulates the excitability of NMDAR via Glu transmission [133]. Eventually, antibody-mediated CaMKII activation may result in movement disorders, such as TS [109, 134].

JAK2/STAT3 pathway

JAK2/STAT3 is considered one of the most important inflammatory pathways that induces the expression of inflammation-related genes. The JAK2/STAT3 pathway is activated by inflammatory factors produced in response to pathogen stimulation. Activation of the JAK2/STAT3 pathway may, in turn, regulate the release of inflammatory factors and interact with downstream transcription factors, such as NF-κB p65, to modulate the inflammatory response. IL-1β, TNF-α, and IL-6 produced in an inflammatory surrounding may activate JAK/STAT signaling, which in turn, can regulate the release of a number of inflammatory cytokines, which may cause neurological damage [118, 135, 136]. Among the JAK2/STAT3 pathway members, STAT3 (signal transducer and activator of transcription 3), a key transcription factor regulating inflammation, can lead to elevated levels of inflammatory cytokines in the brain [119, 137]. LPS can lead to STAT3 phosphorylation [118, 138, 139], after which, STAT3 translocates to the nucleus and acts as a transcription factor, inducing the expression of inflammatory genes. The phosphorylation of STAT may cause the phosphorylation of Janus kinase, and regulate the inflammatory response by interacting with other transcription factors, such as NF-κB p65. LPS induces microglial activation through the JAK2/STAT3 pathway, which regulates the release of inflammatory cytokines [140]. Subsequently, the release of neurotransmitters was regulated, which may lead to the onset of TS [117, 141, 142].

NF-κB pathway

Microglia can be activated by LPS through the NF-κB signaling pathway, leading to neuroinflammation [120]. Many pathways, such as the PI3K/Akt, TLR/NLRP3, TLR/MyD88, BDNF/TrkB/MyD88, EGF/EGFR, and Nrf-2/HO-1 pathways, have been shown to regulate NF-κB. PI3K/Akt regulates the NF-κB pathway through the phosphorylation of Akt [121, 122]. Activation of the TLR/NLRP3/NF-κB pathway has been reported to induce inflammation in rat models [123, 143, 144]. The TLR/MyD88/NF-κB pathway has also been shown to be involved in the pathogenesis of TS [123]. Brain-derived neurotrophic factor (BDNF) combined (Trk) receptor, BDNF-tropomyosin-receptor kinase B (TrkB) signaling pathway plays a crucial role in the development of TS by activating the MyD88/NF-κB pathway to regulate the inflammatory response [124, 125, 145]. Inhibition of the Nrf-2/HO‐1 pathway can also lead to activation of the NF‐кB pathway [126]. Inhibition of the EGF/EGFR pathway may activate the NF-κB pathway by inhibiting the Nrf-2/HO-1 pathway, which is involved in inflammation and oxidative stress regulation [127].

Other pathways related to TS

The NMDAR/MAPK/CREB pathway plays an important role in the development of TS. Mitogen-activated protein kinase (MAPK) is reported to play important roles in the release of inflammatory cytokines. MAPKs, including c-Jun terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK) and p38, regulate the expression of inflammatory genes [121, 146]. Glu, the release of which is mediated by NMDA receptors, is associated with tic syndromes [147]. Hence, the NMDA-MAPK pathway may lead to TS through the release of inflammatory cytokines and Glu [128]. The PI3K/AKT/mTOR pathway may also be involved in TS pathogenesis [129]. Dopamine release and neuronal growth are regulated by mTOR signaling. The absence of mTOR in the ventral tegmental area alters the balance of neurotransmitters and reduces dopamine levels [148]. In one study, increased levels of FLT3 were observed in patients with TS [149]. Single nucleotide polymorphisms (SNPs) located in the receptor tyrosine kinase gene FLT3 have been found to activate the PI3K/AKT/mTOR pathway [150].

Conclusions

TS is a neuropsychiatric disorder associated with inflammation-mediated immune response. This article describes the pathogenesis of TS associated with immune responses caused by infection or allergy. Previously, it was found that abnormalities in the CSTC circuit lead to the onset of tics, which are mainly associated with an imbalance in neurotransmitters. Genetic and environmental factors are also involved in the pathogenesis of TS. Inflammation-mediated immune responses can also cause tics, as has been confirmed in numerous clinical and animal studies. Triggers that contribute to the development of tics via inflammatory responses include viral and bacterial infections and allergic reactions. Based on the findings of previous studies, we created a diagram to summarize the underlying mechanism of TS associated with inflammation (Fig. 2). The neurotransmitter imbalance in TS, mediated by neuroinflammation, is a research hotspot involving dopamine and Glu. Tic disorders induced by infection or allergic reactions are commonly observed in clinical practice. Large-sample randomized controlled trials or cohort studies should be conducted to further demonstrate the impact of inflammation-related factors on the onset of tics, which will provide the foundation for exploring novel therapeutic approaches to TS.

Fig. 2
figure 2

Summary of the possible mechanism leading to Tourette syndrome (TS) associated with the immune response/inflammation. Bacterial infection leads to over-activation of the peripheral immune response, producing a large number of inflammatory cytokines, which diffuse into the brain across the BBB and lead to neuroinflammation. Virus or allergens cloud also mediate the release of inflammatory cytokines. Excessive inflammatory cytokines can also lead to microglia M1 hyperpolarization via the JAK2/STAT3 and NF-κB pathways, which may impair striatal dopaminergic neurons, causing over-release of dopamine (DA), resulting in tics. Anti-neuronal antibodies also play an important role in the pathogenesis of TS mediated by infection. Anti-neuronal antibodies produced after bacterial infection, particularly streptococcus infection, interact with neuronal surface antigens, which activate microglia via the CAMK II pathway, leading to impaired dopaminergic neurons, ultimately, leading to tic syndrome

Data availability

Not applicable.

References

  1. Frey J, Malaty IA. Tourette Syndrome Treatment Updates: a review and discussion of the current and upcoming literature. Curr Neurol Neurosci Rep. 2022;22:123–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11910-022-01177-8.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Szejko N, Robinson S, Hartmann A, Ganos C, Debes NM, Skov L, Haas M, Rizzo R, Stern J, Münchau A, et al. European clinical guidelines for Tourette syndrome and other tic disorders-version 2.0. Part I: assessment. Eur Child Adolesc Psychiatry. 2022;31:383–402. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00787-021-01842-2.

    Article  PubMed  Google Scholar 

  3. Chou CY, Agin-Liebes J, Kuo SH. Emerging therapies and recent advances for Tourette syndrome. Heliyon. 2023;9:e12874. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.heliyon.2023.e12874.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Peterson BS, Pine DS, Cohen P, Brook JS, Prospective. Longitudinal study of tic, obsessive-compulsive, and attention-deficit/hyperactivity disorders in an epidemiological sample. J Am Acad Child Adolesc Psychiatry. 2001;40:685–95. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/00004583-200106000-00014.

  5. Naro A, Billeri L, Colucci VP, Le Cause M, De Domenico C, Ciatto L, Bramanti P, Bramanti A, Calabrò RS. Brain functional connectivity in chronic tic disorders and Gilles De La Tourette syndrome. Prog Neurobiol. 2020;194:101884. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pneurobio.2020.101884.

    Article  PubMed  Google Scholar 

  6. Ramkiran S, Veselinović T, Dammers J, Gaebler AJ, Rajkumar R, Shah NJ, Neuner I. How brain networks tic: Predicting tic severity through rs-fMRI dynamics in Tourette syndrome. Hum Brain Mapp. 2023;44:4225–38. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/hbm.26341.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lin WD, Tsai FJ, Chou IC. Current understanding of the genetics of tourette syndrome. Biomed J. 2022;45:271–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bj.2022.01.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mink JW. Basal ganglia dysfunction in Tourette’s syndrome: a new hypothesis. Pediatr Neurol. 2001;25:190–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0887-8994(01)00262-4.

    Article  CAS  PubMed  Google Scholar 

  9. Worbe Y, Malherbe C, Hartmann A, Pélégrini-Issac M, Messé A, Vidailhet M, Lehéricy S, Benali H. Functional immaturity of cortico-basal ganglia networks in Gilles De La Tourette syndrome. Brain. 2012;135:1937–46. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/brain/aws056.

    Article  PubMed  Google Scholar 

  10. Wang Z, Maia TV, Marsh R, Colibazzi T, Gerber A, Peterson BS. The neural circuits that generate tics in Tourette’s syndrome. Am J Psychiatry. 2011;168:1326–37. https://doiorg.publicaciones.saludcastillayleon.es/10.1176/appi.ajp.2011.09111692.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Buse J, Schoenefeld K, Münchau A, Roessner V. Neuromodulation in Tourette syndrome: dopamine and beyond. Neurosci Biobehav Rev. 2013;37:1069–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neubiorev.2012.10.004.

    Article  CAS  PubMed  Google Scholar 

  12. Kanaan AS, Gerasch S, García-García I, Lampe L, Pampel A, Anwander A, Near J, Möller HE, Müller-Vahl K. Pathological glutamatergic neurotransmission in Gilles De La Tourette syndrome. Brain. 2017;140:218–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/brain/aww285.

    Article  PubMed  Google Scholar 

  13. Wang X, Liu X, Chen L, Zhang X. The inflammatory injury in the striatal microglia-dopaminergic-neuron crosstalk involved in Tourette syndrome development. Front Immunol. 2023;14:1178113. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2023.1178113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol. 2021;17:564–79. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41582-021-00530-8.

    Article  PubMed  Google Scholar 

  15. Li Y, Wang X, Yang H, Li Y, Gui J, Cui Y. Profiles of Proinflammatory cytokines and T cells in patients with Tourette Syndrome: a Meta-analysis. Front Immunol. 2022;13:843247. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fimmu.2022.843247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Schrag A, Martino D, Apter A, Ball J, Bartolini E, Benaroya-Milshtein N, Buttiglione M, Cardona F, Creti R, Efstratiou A, et al. European Multicentre Tics in Children studies (EMTICS): protocol for two cohort studies to assess risk factors for tic onset and exacerbation in children and adolescents. Eur Child Adolesc Psychiatry. 2019;28:91–109. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00787-018-1190-4.

    Article  PubMed  Google Scholar 

  17. Yuce M, Guner SN, Karabekiroglu K, Baykal S, Kilic M, Sancak R, Karabekiroglu A. Association of Tourette syndrome and obsessive-compulsive disorder with allergic diseases in children and adolescents: a preliminary study. Eur Rev Med Pharmacol Sci. 2014;18:303–10.

    CAS  PubMed  Google Scholar 

  18. Swedo SE, Leonard HL, Garvey M, Mittleman B, Allen AJ, Perlmutter S, Lougee L, Dow S, Zamkoff J, Dubbert BK. Pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections: clinical description of the first 50 cases. Am J Psychiatry. 1998;155:264–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1176/ajp.155.2.264.

    Article  CAS  PubMed  Google Scholar 

  19. Lepri G, Rigante D, Bellando Randone S, Meini A, Ferrari A, Tarantino G, Cunningham MW, Falcini F. Clinical-serological characterization and treatment outcome of a large cohort of Italian Children with Pediatric Autoimmune Neuropsychiatric Disorder Associated with streptococcal infection and Pediatric Acute Neuropsychiatric Syndrome. J Child Adolesc Psychopharmacol. 2019;29:608–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/cap.2018.0151.

    Article  CAS  PubMed  Google Scholar 

  20. Mell LK, Davis RL, Owens D. Association between streptococcal infection and obsessive-compulsive disorder, Tourette’s syndrome, and tic disorder. Pediatrics. 2005;116:56–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1542/peds.2004-2058.

    Article  PubMed  Google Scholar 

  21. Leslie DL, Kozma L, Martin A, Landeros A, Katsovich L, King RA, Leckman JF. Neuropsychiatric disorders associated with streptococcal infection: a case-control study among privately insured children. J Am Acad Child Adolesc Psychiatry. 2008;47:1166–72. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/CHI.0b013e3181825a3d.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Martino D, Chiarotti F, Buttiglione M, Cardona F, Creti R, Nardocci N, Orefici G, Veneselli E, Rizzo R. The relationship between group a streptococcal infections and Tourette syndrome: a study on a large service-based cohort. Dev Med Child Neurol. 2011;53:951–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1469-8749.2011.04018.x.

    Article  PubMed  Google Scholar 

  23. Murphy TK, Storch EA, Lewin AB, Edge PJ, Goodman WK. Clinical factors associated with pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. J Pediatr. 2012;160:314–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jpeds.2011.07.012.

    Article  PubMed  Google Scholar 

  24. Wang HC, Lau CI, Lin CC, Chang A, Kao CH. Group A Streptococcal infections are Associated with increased risk of Pediatric Neuropsychiatric disorders: a Taiwanese Population-based Cohort Study. J Clin Psychiatry. 2016;77:e848–854. https://doiorg.publicaciones.saludcastillayleon.es/10.4088/JCP.14m09728.

    Article  PubMed  Google Scholar 

  25. Orlovska S, Vestergaard CH, Bech BH, Nordentoft M, Vestergaard M, Benros ME. Association of Streptococcal Throat infection with Mental disorders: testing key aspects of the PANDAS hypothesis in a nationwide study. JAMA Psychiatry. 2017;74:740–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/jamapsychiatry.2017.0995.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Murphy ML, Pichichero ME. Prospective identification and treatment of children with pediatric autoimmune neuropsychiatric disorder associated with group a streptococcal infection (PANDAS). Arch Pediatr Adolesc Med. 2002;156:356–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1001/archpedi.156.4.356.

    Article  PubMed  Google Scholar 

  27. Eftimiadi C, Eftimiadi G, Vinai P. Staphylococcus aureus colonization modulates tic expression and the Host Immune Response in a girl with Tourette Syndrome. Front Psychiatry. 2016;7:31. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fpsyt.2016.00031.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Villalba N, Ma Y, Gahan SA, Joly-Amado A, Spence S, Yang X, Nash KR, Yuan SY. Lung infection by Pseudomonas aeruginosa induces neuroinflammation and blood-brain barrier dysfunction in mice. J Neuroinflammation. 2023;20:127. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12974-023-02817-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Krause DL, Weidinger E, Matz J, Wildenauer A, Wagner JK, Obermeier M, Riedel M, Möller HJ, Müller N. Infectious agents are Associated with Psychiatric diseases. Ment Illn. 2012;4:e10. https://doiorg.publicaciones.saludcastillayleon.es/10.4081/mi.2012.e10.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hsu CJ, Wong LC, Lee WT. Immunological dysfunction in Tourette Syndrome and Related disorders. Int J Mol Sci. 2021;22. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms22020853.

  31. Pringsheim T, Martino D. Rapid onset of functional tic-like behaviours in young adults during the COVID-19 pandemic. Eur J Neurol. 2021;28:3805–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/ene.15034.

    Article  PubMed  Google Scholar 

  32. Budman CL, Kerjakovic M, Bruun RD. Viral infection and tic exacerbation. J Am Acad Child Adolesc Psychiatry. 1997;36:162. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/00004583-199702000-00004.

    Article  CAS  PubMed  Google Scholar 

  33. Tsai CS, Yang YH, Huang KY, Lee Y, McIntyre RS, Chen VC. Association of Tic Disorders and enterovirus infection: a Nationwide Population-based study. Med (Baltim). 2016;95:e3347. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/md.0000000000003347.

    Article  Google Scholar 

  34. Chu PY, Tsai YL, Chen HL, Ke GM, Hsu CY, Chen YT, Wang CF, Su HJ, Chou LC, Hsu LC, et al. Coxsackievirus B4 in southern Taiwan: molecular epidemiology. J Clin Virol. 2009;45:16–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jcv.2009.02.012.

    Article  CAS  PubMed  Google Scholar 

  35. Pavone P, Ceccarelli M, Marino S, Caruso D, Falsaperla R, Berretta M, Rullo EV, Nunnari G. SARS-CoV-2 related paediatric acute-onset neuropsychiatric syndrome. Lancet Child Adolesc Health. 2021;5:e19–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s2352-4642(21)00135-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Müller N, Riedel M, Förderreuther S, Blendinger C, Abele-Horn M. Tourette’s syndrome and mycoplasma pneumoniae infection. Am J Psychiatry. 2000;157:481–2. https://doiorg.publicaciones.saludcastillayleon.es/10.1176/appi.ajp.157.3.481-a.

    Article  PubMed  Google Scholar 

  37. Riedel M, Straube A, Schwarz MJ, Wilske B, Müller N. Lyme disease presenting as Tourette’s syndrome. Lancet. 1998;351:418–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0140-6736(05)78357-4.

    Article  CAS  PubMed  Google Scholar 

  38. Müller N, Riedel M, Blendinger C, Oberle K, Jacobs E, Abele-Horn M. Mycoplasma pneumoniae infection and Tourette’s syndrome. Psychiatry Res. 2004;129:119–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.psychres.2004.04.009.

    Article  CAS  PubMed  Google Scholar 

  39. Akaltun İ, Kara T, Sertan Kara S, Ayaydın H. Seroprevalance Anti-toxoplasma gondii antibodies in children and adolescents with tourette syndrome/chronic motor or vocal tic disorder: a case-control study. Psychiatry Res. 2018;263:154–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.psychres.2018.03.020.

    Article  PubMed  Google Scholar 

  40. Krause D, Matz J, Weidinger E, Wagner J, Wildenauer A, Obermeier M, Riedel M, Müller N. Association between intracellular infectious agents and Tourette’s syndrome. Eur Arch Psychiatry Clin Neurosci. 2010;260:359–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00406-009-0084-3.

    Article  PubMed  Google Scholar 

  41. Zhang Y, Xiao N, Zhang X, Zhang Z, Zhang J. Identifying factors Associated with the recurrence of Tic disorders. Brain Sci. 2022;12. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/brainsci12060697.

  42. Finegold I. Allergy and Tourette’s syndrome. Ann Allergy. 1985;55:119–21.

    CAS  PubMed  Google Scholar 

  43. Ho CS, Shen EY, Shyur SD, Chiu NC. Association of allergy with Tourette’s syndrome. J Formos Med Assoc. 1999;98:492–5.

    CAS  PubMed  Google Scholar 

  44. Chang Y, Zhang Y, Bai Y, Lin R, Qi Y, Li M. The correlation between tic disorders and allergic conditions in children: a systematic review and meta-analysis of observational studies. Front Pediatr. 2023;11:1064001. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fped.2023.1064001.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu Y, Li Y, Ma X, Yu L, Liang Y, Li C. Comparative analysis of serum total IgE levels and specific IgE levels in children aged 6 to 9 years with tic disorder and normal children. BMC Pediatr. 2023;23:399. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12887-023-04233-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kawikova I, Leckman JF, Kronig H, Katsovich L, Bessen DE, Ghebremichael M, Bothwell AL. Decreased numbers of regulatory T cells suggest impaired immune tolerance in children with tourette syndrome: a preliminary study. Biol Psychiatry. 2007;61:273–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopsych.2006.06.012.

    Article  CAS  PubMed  Google Scholar 

  47. Piccirillo CA, Shevach EM. Naturally-occurring CD4 + CD25 + immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin Immunol. 2004;16:81–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.smim.2003.12.003.

    Article  CAS  PubMed  Google Scholar 

  48. Suvas S, Kumaraguru U, Pack CD, Lee S, Rouse BT. CD4 + CD25 + T cells regulate virus-specific primary and memory CD8 + T cell responses. J Exp Med. 2003;198:889–901. https://doiorg.publicaciones.saludcastillayleon.es/10.1084/jem.20030171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Li E, Ruan Y, Chen Q, Cui X, Lv L, Zheng P, Wang L. Streptococcal infection and immune response in children with Tourette’s syndrome. Childs Nerv Syst. 2015;31:1157–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00381-015-2692-8.

    Article  CAS  PubMed  Google Scholar 

  50. Gabbay V, Coffey BJ, Guttman LE, Gottlieb L, Katz Y, Babb JS, Hamamoto MM, Gonzalez CJ. A cytokine study in children and adolescents with Tourette’s disorder. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33:967–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pnpbp.2009.05.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Leckman JF, Katsovich L, Kawikova I, Lin H, Zhang H, Krönig H, Morshed S, Parveen S, Grantz H, Lombroso PJ, et al. Increased serum levels of interleukin-12 and tumor necrosis factor-alpha in Tourette’s syndrome. Biol Psychiatry. 2005;57:667–73. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopsych.2004.12.004.

    Article  CAS  PubMed  Google Scholar 

  52. Ma X, Yan W, Zheng H, Du Q, Zhang L, Ban Y, Li N, Wei F. Regulation of IL-10 and IL-12 production and function in macrophages and dendritic cells. F1000Res. 2015;4. https://doiorg.publicaciones.saludcastillayleon.es/10.12688/f1000research.7010.1.

  53. Möller JC, Tackenberg B, Heinzel-Gutenbrunner M, Burmester R, Oertel WH, Bandmann O, Müller-Vahl KR. Immunophenotyping in Tourette syndrome–a pilot study. Eur J Neurol. 2008;15:749–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1468-1331.2008.02159.x.

    Article  PubMed  Google Scholar 

  54. Brunner T, Mogil RJ, LaFace D, Yoo NJ, Mahboubi A, Echeverri F, Martin SJ, Force WR, Lynch DH, Ware CF, et al. Cell-autonomous Fas (CD95)/Fas-ligand interaction mediates activation-induced apoptosis in T-cell hybridomas. Nature. 1995;373:441–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/373441a0.

    Article  CAS  PubMed  Google Scholar 

  55. Proft T, Fraser JD. Bacterial superantigens. Clin Exp Immunol. 2003;133:299–306. https://doiorg.publicaciones.saludcastillayleon.es/10.1046/j.1365-2249.2003.02203.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Miethke T, Wahl C, Heeg K, Echtenacher B, Krammer PH, Wagner H. T cell-mediated lethal shock triggered in mice by the superantigen staphylococcal enterotoxin B: critical role of tumor necrosis factor. J Exp Med. 1992;175:91–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1084/jem.175.1.91.

    Article  CAS  PubMed  Google Scholar 

  57. Weidinger E, Krause D, Wildenauer A, Meyer S, Gruber R, Schwarz MJ, Müller N. Impaired activation of the innate immune response to bacterial challenge in Tourette syndrome. World J Biol Psychiatry. 2014;15:453–8. https://doiorg.publicaciones.saludcastillayleon.es/10.3109/15622975.2014.907503.

    Article  PubMed  Google Scholar 

  58. Cauwels A, Frei K, Sansano S, Fearns C, Ulevitch R, Zimmerli W, Landmann R. The origin and function of soluble CD14 in experimental bacterial meningitis. J Immunol. 1999;162:4762–72.

    Article  CAS  PubMed  Google Scholar 

  59. Rhoades RE, Tabor-Godwin JM, Tsueng G, Feuer R. Enterovirus infections of the central nervous system. Virology. 2011;411:288–305. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.virol.2010.12.014.

    Article  CAS  PubMed  Google Scholar 

  60. Yeon SM, Lee JH, Kang D, Bae H, Lee KY, Jin S, Kim JR, Jung YW, Park TW. A cytokine study of pediatric Tourette’s disorder without obsessive compulsive disorder. Psychiatry Res. 2017;247:90–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.psychres.2016.11.005.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng YH, Zheng Y, He F, Yang JH, Li WB, Wang ML, Cui DY, Chen Y. Detection of autoantibodies and increased concentrations of interleukins in plasma from patients with Tourette’s syndrome. J Mol Neurosci. 2012;48:219–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12031-012-9811-8.

    Article  CAS  PubMed  Google Scholar 

  62. Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ, Li YN, You MF, et al. Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis. 2019;10. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41419-019-1716-9.

  63. Fujihara K, Bennett JL, de Seze J, Haramura M, Kleiter I, Weinshenker BG, Kang D, Mughal T, Yamamura T. Interleukin-6 in neuromyelitis optica spectrum disorder pathophysiology. Neurol Neuroimmunol Neuroinflamm. 2020;7. https://doiorg.publicaciones.saludcastillayleon.es/10.1212/nxi.0000000000000841.

  64. Riazi K, Galic MA, Kuzmiski JB, Ho W, Sharkey KA, Pittman QJ. Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proc Natl Acad Sci U S A. 2008;105:17151–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.0806682105.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Zhongling K, Yanhui C, Guofeng C, Yanyan L. Neuroinflammation in a rat model of Tourette Syndrome. Front Behav Neurosci. 2022;16:710116. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnbeh.2022.710116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Prossin AR, Yolken RH, Kamali M, Heitzeg MM, Kaplow JB, Coryell WH, McInnis MG. Cytomegalovirus Antibody Elevation in Bipolar Disorder: Relation to Elevated Mood States. Neural Plast 2015, 2015, 939780. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2015/939780

  67. You HZ, Zhang J, Du Y, Yu PB, Li L, Xie J, Mi Y, Hou Z, Yang XD, Sun KX. Association of elevated plasma CCL5 levels with high risk for tic disorders in children. Front Pediatr. 2023;11:1126839. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fped.2023.1126839.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yan J, Zuo G, Sherchan P, Huang L, Ocak U, Xu W, Travis ZD, Wang W, Zhang JH, Tang J. CCR1 activation promotes Neuroinflammation through CCR1/TPR1/ERK1/2 signaling pathway after Intracerebral Hemorrhage in mice. Neurotherapeutics. 2020;17:1170–83. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s13311-019-00821-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yan J, Xu W, Lenahan C, Huang L, Wen J, Li G, Hu X, Zheng W, Zhang JH, Tang J. CCR5 activation promotes NLRP1-Dependent neuronal pyroptosis via CCR5/PKA/CREB pathway after Intracerebral Hemorrhage. Stroke. 2021;52:4021–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/strokeaha.120.033285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Alshammery S, Patel S, Jones HF, Han VX, Gloss BS, Gold WA, Dale RC. Common targetable inflammatory pathways in brain transcriptome of autism spectrum disorders and Tourette syndrome. Front Neurosci. 2022;16:999346. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2022.999346.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Lennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, Huttner A, Pletikos M, Sestan N, Leckman JF, et al. Transcriptome analysis of the human striatum in Tourette Syndrome. Biol Psychiatry. 2016;79:372–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopsych.2014.07.018.

    Article  CAS  PubMed  Google Scholar 

  72. Ferreira R, Santos T, Gonçalves J, Baltazar G, Ferreira L, Agasse F, Bernardino L. Histamine modulates microglia function. J Neuroinflammation. 2012;9. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1742-2094-9-90.

  73. Frick L, Rapanelli M, Abbasi E, Ohtsu H, Pittenger C. Histamine regulation of microglia: gene-environment interaction in the regulation of central nervous system inflammation. Brain Behav Immun. 2016;57:326–37. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbi.2016.07.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ercan-Sencicek AG, Stillman AA, Ghosh AK, Bilguvar K, O’Roak BJ, Mason CE, Abbott T, Gupta A, King RA, Pauls DL, et al. L-histidine decarboxylase and Tourette’s syndrome. N Engl J Med. 2010;362:1901–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1056/NEJMoa0907006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Guo S, Wang H, Yin Y. Microglia polarization from M1 to M2 in neurodegenerative diseases. Front Aging Neurosci. 2022;14:815347. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnagi.2022.815347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jha MK, Lee WH, Suk K. Functional polarization of neuroglia: implications in neuroinflammation and neurological disorders. Biochem Pharmacol. 2016;103:1–16. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bcp.2015.11.003.

    Article  CAS  PubMed  Google Scholar 

  77. Ma Q, Xing C, Long W, Wang HY, Liu Q, Wang RF. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J Neuroinflammation. 2019;16:53. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12974-019-1434-3.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Costantino G. New promises for manipulation of kynurenine pathway in cancer and neurological diseases. Expert Opin Ther Targets. 2009;13:247–58. https://doiorg.publicaciones.saludcastillayleon.es/10.1517/14728220802665734.

    Article  CAS  PubMed  Google Scholar 

  79. de Leeuw C, Goudriaan A, Smit AB, Yu D, Mathews CA, Scharf JM, Verheijen MH, Posthuma D. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis. Eur J Hum Genet. 2015;23:1519–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ejhg.2015.22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Aida T, Yoshida J, Nomura M, Tanimura A, Iino Y, Soma M, Bai N, Ito Y, Cui W, Aizawa H, et al. Astroglial glutamate transporter deficiency increases synaptic excitability and leads to pathological repetitive behaviors in mice. Neuropsychopharmacology. 2015;40:1569–79. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/npp.2015.26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang Y, Xu H, Jing M, Hu X, Wang J, Hua Y. Gut Microbiome Composition abnormalities determined using high-throughput sequencing in Children with Tic Disorder. Front Pediatr. 2022;10:831944. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fped.2022.831944.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Quagliariello A, Del Chierico F, Russo A, Reddel S, Conte G, Lopetuso LR, Ianiro G, Dallapiccola B, Cardona F, Gasbarrini A, et al. Gut microbiota profiling and gut-brain crosstalk in children affected by Pediatric Acute-Onset Neuropsychiatric Syndrome and Pediatric Autoimmune Neuropsychiatric disorders Associated with Streptococcal infections. Front Microbiol. 2018;9:675. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fmicb.2018.00675.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Wan L, Ge WR, Zhang S, Sun YL, Wang B, Yang G. Case-control study of the effects of Gut Microbiota Composition on Neurotransmitter Metabolic pathways in Children with attention deficit hyperactivity disorder. Front Neurosci. 2020;14. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fnins.2020.00127.

  84. Bernard NJ. Rheumatoid arthritis: Prevotella copri associated with new-onset untreated RA. Nat Rev Rheumatol. 2014;10. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nrrheum.2013.187.

  85. Wong ML, Inserra A, Lewis MD, Mastronardi CA, Leong L, Choo J, Kentish S, Xie P, Morrison M, Wesselingh SL, et al. Inflammasome signaling affects anxiety- and depressive-like behavior and gut microbiome composition. Mol Psychiatry. 2016;21:797–805. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/mp.2016.46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Duranti S, Ruiz L, Lugli GA, Tames H, Milani C, Mancabelli L, Mancino W, Longhi G, Carnevali L, Sgoifo A, et al. Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA. Sci Rep. 2020;10:14112. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41598-020-70986-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Puts NA, Harris AD, Crocetti D, Nettles C, Singer HS, Tommerdahl M, Edden RA, Mostofsky SH. Reduced GABAergic inhibition and abnormal sensory symptoms in children with Tourette syndrome. J Neurophysiol. 2015;114:808–17. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/jn.00060.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Muller N, Schwarz M. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox Res. 2006;10:131–48. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/bf03033242.

    Article  CAS  PubMed  Google Scholar 

  89. Morshed SA, Parveen S, Leckman JF, Mercadante MT, Bittencourt Kiss MH, Miguel EC, Arman A, Yazgan Y, Fujii T, Paul S, et al. Antibodies against neural, nuclear, cytoskeletal, and streptococcal epitopes in children and adults with Tourette’s syndrome, Sydenham’s chorea, and autoimmune disorders. Biol Psychiatry. 2001;50:566–77. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0006-3223(01)01096-4.

    Article  CAS  PubMed  Google Scholar 

  90. Singer HS, Giuliano JD, Hansen BH, Hallett JJ, Laurino JP, Benson M, Kiessling LS. Antibodies against a neuron-like (HTB-10 neuroblastoma) cell in children with Tourette syndrome. Biol Psychiatry. 1999;46:775–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0006-3223(98)00384-9.

    Article  CAS  PubMed  Google Scholar 

  91. Taylor JR, Morshed SA, Parveen S, Mercadante MT, Scahill L, Peterson BS, King RA, Leckman JF, Lombroso PJ. An animal model of Tourette’s syndrome. Am J Psychiatry. 2002;159:657–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1176/appi.ajp.159.4.657.

    Article  PubMed  Google Scholar 

  92. Martino D, Giovannoni G. Antibasal ganglia antibodies and their relevance to movement disorders. Curr Opin Neurol. 2004;17:425–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/01.wco.0000137532.76491.19.

    Article  PubMed  Google Scholar 

  93. Singer HS, Gause C, Morris C, Lopez P. Serial immune markers do not correlate with clinical exacerbations in pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections. Pediatrics. 2008;121:1198–205. https://doiorg.publicaciones.saludcastillayleon.es/10.1542/peds.2007-2658.

    Article  PubMed  Google Scholar 

  94. Hoffman KL, Cano-Ramírez H. Pediatric neuropsychiatric syndromes associated with infection and microbiome alterations: clinical findings, possible role of the mucosal epithelium, and strategies for the development of new animal models. Expert Opin Drug Discov. 2022;17:717–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/17460441.2022.2074396.

    Article  PubMed  Google Scholar 

  95. Pavone P, Bianchini R, Parano E, Incorpora G, Rizzo R, Mazzone L, Trifiletti RR. Anti-brain antibodies in PANDAS versus uncomplicated streptococcal infection. Pediatr Neurol. 2004;30:107–10. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0887-8994(03)00413-2.

    Article  PubMed  Google Scholar 

  96. Rizzo R, Gulisano M, Pavone P, Fogliani F, Robertson MM. Increased antistreptococcal antibody titers and anti-basal ganglia antibodies in patients with Tourette syndrome: controlled cross-sectional study. J Child Neurol. 2006;21:747–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/08830738060210091001.

    Article  PubMed  Google Scholar 

  97. Dale RC, Candler PM, Church AJ, Wait R, Pocock JM, Giovannoni G. Neuronal surface glycolytic enzymes are autoantigen targets in post-streptococcal autoimmune CNS disease. J Neuroimmunol. 2006;172:187–97. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneuroim.2005.10.014.

    Article  CAS  PubMed  Google Scholar 

  98. Kansy JW, Katsovich L, McIver KS, Pick J, Zabriskie JB, Lombroso PJ, Leckman JF, Bibb JA. Identification of pyruvate kinase as an antigen associated with Tourette syndrome. J Neuroimmunol. 2006;181:165–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneuroim.2006.08.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kirvan CA, Swedo SE, Heuser JS, Cunningham MW. Mimicry and autoantibody-mediated neuronal cell signaling in Sydenham chorea. Nat Med. 2003;9:914–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nm892.

    Article  CAS  PubMed  Google Scholar 

  100. Baglioni V, Coutinho E, Menassa DA, Giannoccaro MP, Jacobson L, Buttiglione M, Petruzzelli O, Cardona F, Vincent A. Antibodies to neuronal surface proteins in Tourette Syndrome: lack of evidence in a European paediatric cohort. Brain Behav Immun. 2019;81:665–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbi.2019.08.008.

    Article  CAS  PubMed  Google Scholar 

  101. Verkerk AJ, Mathews CA, Joosse M, Eussen BH, Heutink P, Oostra BA. CNTNAP2 is disrupted in a family with Gilles De La Tourette syndrome and obsessive compulsive disorder. Genomics. 2003;82:1–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0888-7543(03)00097-1.

    Article  CAS  PubMed  Google Scholar 

  102. Sühs KW, Skripuletz T, Pul R, Alvermann S, Schwenkenbecher P, Stangel M, Müller-Vahl K. Gilles De La Tourette syndrome is not linked to contactin-associated protein receptor 2 antibodies. Mol Brain. 2015;8:62. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13041-015-0154-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Belloso JM, Bache I, Guitart M, Caballin MR, Halgren C, Kirchhoff M, Ropers HH, Tommerup N, Tümer Z. Disruption of the CNTNAP2 gene in a t(7;15) translocation family without symptoms of Gilles De La Tourette syndrome. Eur J Hum Genet. 2007;15:711–3. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/sj.ejhg.5201824.

    Article  CAS  PubMed  Google Scholar 

  104. Chain JL, Alvarez K, Mascaro-Blanco A, Reim S, Bentley R, Hommer R, Grant P, Leckman JF, Kawikova I, Williams K, et al. Autoantibody biomarkers for basal ganglia encephalitis in Sydenham Chorea and Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infections. Front Psychiatry. 2020;11:564. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fpsyt.2020.00564.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Shimasaki C, Frye RE, Trifiletti R, Cooperstock M, Kaplan G, Melamed I, Greenberg R, Katz A, Fier E, Kem D, et al. Evaluation of the Cunningham Panel™ in pediatric autoimmune neuropsychiatric disorder associated with streptococcal infection (PANDAS) and pediatric acute-onset neuropsychiatric syndrome (PANS): changes in antineuronal antibody titers parallel changes in patient symptoms. J Neuroimmunol. 2020;339:577138. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneuroim.2019.577138.

    Article  CAS  PubMed  Google Scholar 

  106. Brilot F, Merheb V, Ding A, Murphy T, Dale RC. Antibody binding to neuronal surface in Sydenham chorea, but not in PANDAS or Tourette syndrome. Neurology. 2011;76:1508–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1212/WNL.0b013e3182181090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Cox CJ, Zuccolo AJ, Edwards EV, Mascaro-Blanco A, Alvarez K, Stoner J, Chang K, Cunningham MW. Antineuronal antibodies in a heterogeneous group of youth and young adults with tics and obsessive-compulsive disorder. J Child Adolesc Psychopharmacol. 2015;25:76–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/cap.2014.0048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Blum K, Dennen CA, Braverman ER, Gupta A, Baron D, Downs BW, Bagchi D, Thanos P, Pollock M, Khalsa J, et al. Hypothesizing that Pediatric Autoimmune Neuropsychiatric Associated Streptococcal (PANDAS) causes Rapid Onset of reward Deficiency Syndrome (RDS) behaviors and may require induction of dopamine homeostasis. Open J Immunol. 2022;12:65–75. https://doiorg.publicaciones.saludcastillayleon.es/10.4236/oji.2022.123004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Kirvan CA, Swedo SE, Snider LA, Cunningham MW. Antibody-mediated neuronal cell signaling in behavior and movement disorders. J Neuroimmunol. 2006;179:173–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneuroim.2006.06.017.

    Article  CAS  PubMed  Google Scholar 

  110. Yeh CB, Shui HA, Chu TH, Chen YA, Tsung HC, Shyu JF. Hyperpolarisation-activated cyclic nucleotide channel 4 (HCN4) involvement in Tourette’s syndrome autoimmunity. J Neuroimmunol. 2012;250:18–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneuroim.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  111. Boyes J, Bolam JP, Shigemoto R, Stanford IM. Functional presynaptic HCN channels in the rat globus pallidus. Eur J Neurosci. 2007;25:2081–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1460-9568.2007.05463.x.

    Article  PubMed  Google Scholar 

  112. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci U S A. 1999;96:9391–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.96.16.9391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Leckman JF, Bloch MH, King RA. Symptom dimensions and subtypes of obsessive-compulsive disorder: a developmental perspective. Dialogues Clin Neurosci. 2009;11:21–33. https://doiorg.publicaciones.saludcastillayleon.es/10.31887/DCNS.2009.11.1/jfleckman.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Baumgaertel C, Skripuletz T, Kronenberg J, Stangel M, Schwenkenbecher P, Sinke C, Müller-Vahl KR, Sühs KW. Immunity in Gilles De La Tourette-Syndrome: results from a Cerebrospinal Fluid Study. Front Neurol. 2019;10:732. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fneur.2019.00732.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hongyan L, Mengjiao Z, Chunyan W, Yaruo H. Rhynchophyllin attenuates neuroinflammation in Tourette syndrome rats via JAK2/STAT3 and NF-κB pathways. Environ Toxicol. 2019;34:1114–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/tox.22813.

    Article  CAS  PubMed  Google Scholar 

  116. Wu CC, Tzeng CY, Chang CY, Wang JD, Chen YF, Chen WY, Kuan YH, Liao SL, Wang WY, Chen C. J. NMDA receptor inhibitor MK801 alleviated pro-inflammatory polarization of BV-2 microglia cells. Eur J Pharmacol. 2023;955:175927. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejphar.2023.175927.

    Article  CAS  PubMed  Google Scholar 

  117. Huang C, Ma R, Sun S, Wei G, Fang Y, Liu R, Li G. JAK2-STAT3 signaling pathway mediates thrombin-induced proinflammatory actions of microglia in vitro. J Neuroimmunol. 2008;204:118–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jneuroim.2008.07.004.

    Article  CAS  PubMed  Google Scholar 

  118. Wu J, Zhang J, Xie Q, He X, Guo Z, Zheng B, Wang S, Yang Q, Du C. Bergaptol alleviates LPS-Induced Neuroinflammation, neurological damage and cognitive impairment via regulating the JAK2/STAT3/p65 pathway. J Inflamm Res. 2022;15:6199–211. https://doiorg.publicaciones.saludcastillayleon.es/10.2147/jir.S383853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Kim DH, Cho IH, Kim HS, Jung JE, Kim JE, Lee KH, Park T, Yang YM, Seong SY, Ye SK, et al. Anti-inflammatory effects of 8-hydroxydeoxyguanosine in LPS-induced microglia activation: suppression of STAT3-mediated intercellular adhesion molecule-1 expression. Exp Mol Med. 2006;38:417–27. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/emm.2006.49.

    Article  CAS  PubMed  Google Scholar 

  120. Zeng KW, Wang S, Dong X, Jiang Y, Tu PF. Sesquiterpene dimer (DSF-52) from Artemisia argyi inhibits microglia-mediated neuroinflammation via suppression of NF-κB, JNK/p38 MAPKs and Jak2/Stat3 signaling pathways. Phytomedicine. 2014;21:298–306. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.phymed.2013.08.016.

    Article  CAS  PubMed  Google Scholar 

  121. Kang CH, Jayasooriya RG, Dilshara MG, Choi YH, Jeong YK, Kim ND, Kim GY. Caffeine suppresses lipopolysaccharide-stimulated BV2 microglial cells by suppressing akt-mediated NF-κB activation and ERK phosphorylation. Food Chem Toxicol. 2012;50:4270–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.fct.2012.08.041.

    Article  CAS  PubMed  Google Scholar 

  122. Hongyan L, Chunyan W, Yue’e Y. LY294002, a PI3K inhibitor, attenuates Tourette syndrome in rats. Metab Brain Dis. 2017;32:1619–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11011-017-0051-z.

    Article  CAS  PubMed  Google Scholar 

  123. Hongyan L, Zhenyang S, Chunyan W, Qingqing P. Lipopolysaccharide aggravated DOI-induced Tourette syndrome: elaboration for recurrence of Tourette syndrome. Metab Brain Dis. 2017;32:1929–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11011-017-0084-3.

    Article  CAS  PubMed  Google Scholar 

  124. Long H, Ruan J, Zhang M, Wang C, Huang Y. Rhynchophylline attenuates Tourette Syndrome via BDNF/NF-κB Pathway in Vivo and in Vitro. Neurotox Res. 2019;36:756–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12640-019-00079-x.

    Article  CAS  PubMed  Google Scholar 

  125. Xu D, Lian D, Wu J, Liu Y, Zhu M, Sun J, He D, Li L. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. J Neuroinflammation. 2017;14:156. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12974-017-0930-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Long H, Ruan J, Zhang M, Wang C, Huang Y. Gastrodin alleviates Tourette syndrome via Nrf-2/HO-1/HMGB1/NF-кB pathway. J Biochem Mol Toxicol. 2019;33:e22389. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jbt.22389.

    Article  CAS  PubMed  Google Scholar 

  127. Chunhui Y, Wenjun C, Hui W, Liquan S, Changwei Z, Tianzhu Z, Wenhai Z. Pilose antler peptide protects osteoblasts from inflammatory and oxidative injury through EGF/EGFR signaling. Int J Biol Macromol. 2017;99:15–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijbiomac.2017.02.056.

    Article  CAS  PubMed  Google Scholar 

  128. Haddad JJ. N-methyl-D-aspartate (NMDA) and the regulation of mitogen-activated protein kinase (MAPK) signaling pathways: a revolving neurochemical axis for therapeutic intervention? Prog Neurobiol. 2005;77:252–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.pneurobio.2005.10.008.

    Article  CAS  PubMed  Google Scholar 

  129. Hildonen M, Levy AM, Hansen CS, Bybjerg-Grauholm J, Skytthe A, Debes NM, Tan Q, Tümer Z. EWAS of monozygotic twins implicate a role of mTOR pathway in Pathogenesis of Tic Spectrum Disorder. Genes (Basel). 2021;12. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/genes12101510.

  130. Zhu Q, Zhang H, Wang J, Wu Y, Chen X. Associations of TNF-α -238G/A, TNF-α -308G/A, and IL-6 -174G/C polymorphisms with the risk of asthma: evidence from a meta-analysis. Pediatr Pulmonol. 2020;55:2893–900. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/ppul.25043.

    Article  PubMed  Google Scholar 

  131. Bairamian D, Sha S, Rolhion N, Sokol H, Dorothée G, Lemere CA, Krantic S. Microbiota in neuroinflammation and synaptic dysfunction: a focus on Alzheimer’s disease. Mol Neurodegener. 2022;17:19. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13024-022-00522-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Park J, Jang KM, Park KK. Effects of Apamin on MPP(+)-Induced Calcium overload and neurotoxicity by targeting CaMKII/ERK/p65/STAT3 signaling pathways in dopaminergic neuronal cells. Int J Mol Sci. 2022;23. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms232315255.

  133. Hell JW. CaMKII: claiming center stage in postsynaptic function and organization. Neuron. 2014;81:249–65. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.neuron.2013.12.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Kirvan CA, Swedo SE, Kurahara D, Cunningham MW. Streptococcal mimicry and antibody-mediated cell signaling in the pathogenesis of Sydenham’s chorea. Autoimmunity. 2006;39:21–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/08916930500484757.

    Article  CAS  PubMed  Google Scholar 

  135. Minogue AM, Barrett JP, Lynch MA. LPS-induced release of IL-6 from glia modulates production of IL-1β in a JAK2-dependent manner. J Neuroinflammation. 2012;9:126. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1742-2094-9-126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Mori T, Miyamoto T, Yoshida H, Asakawa M, Kawasumi M, Kobayashi T, Morioka H, Chiba K, Toyama Y, Yoshimura A. IL-1β and TNFα-initiated IL-6-STAT3 pathway is critical in mediating inflammatory cytokines and RANKL expression in inflammatory arthritis. Int Immunol. 2011;23:701–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/intimm/dxr077.

    Article  CAS  PubMed  Google Scholar 

  137. Millot P, San C, Bennana E, Porte B, Vignal N, Hugon J, Paquet C, Hosten B, Mouton-Liger F. STAT3 inhibition protects against neuroinflammation and BACE1 upregulation induced by systemic inflammation. Immunol Lett. 2020;228:129–34. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.imlet.2020.10.004.

    Article  CAS  PubMed  Google Scholar 

  138. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282:9358–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.C600321200.

    Article  CAS  PubMed  Google Scholar 

  139. Samavati L, Rastogi R, Du W, Hüttemann M, Fite A, Franchi L. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol Immunol. 2009;46:1867–77. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.molimm.2009.02.018.

    Article  CAS  PubMed  Google Scholar 

  140. Saravanan S, Islam VI, Babu NP, Pandikumar P, Thirugnanasambantham K, Chellappandian M, Raj CS, Paulraj MG, Ignacimuthu S. Swertiamarin attenuates inflammation mediators via modulating NF-κB/I κB and JAK2/STAT3 transcription factors in adjuvant induced arthritis. Eur J Pharm Sci. 2014;56:70–86. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejps.2014.02.005.

    Article  CAS  PubMed  Google Scholar 

  141. Yoshimura A, Nishinakamura H, Matsumura Y, Hanada T. Negative regulation of cytokine signaling and immune responses by SOCS proteins. Arthritis Res Ther. 2005;7:100–10. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/ar1741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Dominguez E, Rivat C, Pommier B, Mauborgne A, Pohl M. JAK/STAT3 pathway is activated in spinal cord microglia after peripheral nerve injury and contributes to neuropathic pain development in rat. J Neurochem. 2008;107:50–60. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1471-4159.2008.05566.x.

    Article  CAS  PubMed  Google Scholar 

  143. Yan Y, Zhu K, Fan M, Wan W, Zhao X, Pan M, Ma B, Wei Q. Immunolocalization of antibacterial peptide S100A7 in mastitis goat mammary gland and lipopolysaccharide induces the expression and secretion of S100A7 in goat mammary gland epithelial cells via TLR4/NFκB signal pathway. Anim Biotechnol. 2023;34:2701–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/10495398.2022.2112689.

    Article  CAS  PubMed  Google Scholar 

  144. Hongyan L, Mengjiao Z, Chunyan W, Yaruo H. Rhynchophylline attenuates neurotoxicity in Tourette Syndrome rats. Neurotox Res. 2019;36:679–87. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12640-019-00059-1.

    Article  CAS  PubMed  Google Scholar 

  145. Sleiman SF, Henry J, Al-Haddad R, El Hayek L, Abou Haidar E, Stringer T, Ulja D, Karuppagounder SS, Holson EB, Ratan RR, et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife. 2016;5. https://doiorg.publicaciones.saludcastillayleon.es/10.7554/eLife.15092.

  146. Park SY, Jin ML, Kim YH, Kim Y, Lee SJ. Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol. 2012;14:13–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.intimp.2012.06.003.

    Article  CAS  PubMed  Google Scholar 

  147. O’Brien KB, Sharrief AZ, Nordstrom EJ, Travanty AJ, Huynh M, Romero MP, Bittner KC, Bowser MT, Burton FH. Biochemical markers of striatal desensitization in cortical-limbic hyperglutamatergic TS- & OCD-like transgenic mice. J Chem Neuroanat. 2018;89:11–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jchemneu.2018.02.007.

    Article  CAS  PubMed  Google Scholar 

  148. Liu X, Li Y, Yu L, Vickstrom CR, Liu QS. VTA mTOR Signaling regulates dopamine Dynamics, Cocaine-Induced synaptic alterations, and reward. Neuropsychopharmacology. 2018;43:1066–77. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/npp.2017.247.

    Article  CAS  PubMed  Google Scholar 

  149. Tsetsos F, Yu D, Sul JH, Huang AY, Illmann C, Osiecki L, Darrow SM, Hirschtritt ME, Greenberg E, Muller-Vahl KR, et al. Synaptic processes and immune-related pathways implicated in Tourette syndrome. Transl Psychiatry. 2021;11:56. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41398-020-01082-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Chen W, Drakos E, Grammatikakis I, Schlette EJ, Li J, Leventaki V, Staikou-Drakopoulou E, Patsouris E, Panayiotidis P, Medeiros LJ, et al. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol Cancer. 2010;9. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/1476-4598-9-292.

Download references

Acknowledgements

Not applicable.

Funding

This study was supported by the National Natural Science Foundation of China (grant no. 82004418). Shanghai Municipal Health Commission (grant no. 2024PT008).

Author information

Authors and Affiliations

Authors

Contributions

conceptualization: XW, MW, KJ, and JH; writing—original draft preparation: XW and XZ; writing—review and editing: JH and XZ; funding acquisition: XZ. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Ethics considerations

Not applicable.

Consent for publication

Not applicable.

Consent to participate

Not applicable.

Conflicts of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, X., Hao, J., Jiang, K. et al. Neuroinflammation and pathways that contribute to tourette syndrome. Ital J Pediatr 51, 63 (2025). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13052-025-01874-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s13052-025-01874-3

Keywords