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Research on the pathogenesis of TS has involved the 
investigation of genetics; neurotransmitters; and environ-
mental, immunological, and other factors [5–7]. Among 
these, an imbalance in neurotransmitter levels is one of 
the most recognized pathogenic mechanisms. Studies 
have shown that tics may result from the loss of inhibi-
tion of motor cortical neurons and dysfunction of the 
cortex-striatum‐thalamus‐cortex (CSTC) circuit [8–10]. 
As the main neurotransmitters of the CSTC circuit, 
dopamine (DA) and glutamate (Glu) have been shown to 
be associated with the onset of TS [11–13].

In recent years, increasing evidence has indicated that 
neuroinflammation is mediated by infections or allergic 
reactions during the pathogenesis of TS and other neuro-
psychiatric disorders [14, 15]. Studies have demonstrated 
that there is a subset of patients with TS in whom tic 
symptoms are induced by infections or allergic reactions 
[16, 17]. In addition, most patients with TS present exac-
erbated symptoms after pathogenic infections or allergic 
reactions [18, 19]. Some clinical and basic studies have 

Introduction
Tourette syndrome (TS) is a neurodevelopmental dis-
order that begins in childhood and is characterized by 
numerous involuntary motor and vocal tics lasting over 
a year [1]. Approximately 0.3–1% of the population is 
affected by TS [2]. TS frequently co-occurs with attention 
deficit/hyperactivity disorder, obsessive-compulsive dis-
order (OCD), and other psychological problems [3, 4]. TS 
can affect daily life, severely affecting physical and mental 
health, causing a decline in academic performance, and 
even leading to social impairment.
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Abstract
Tourette syndrome (TS), a neurological and psychological disease, typically exhibit motor and phonic tics. The 
pathophysiology of TS remains controversial. Currently, the recognized pathogenesis of TS is the imbalance of 
neurotransmitters, involving abnormality of the cortex-striatum-thalamus-cortex circuit. Recently, clinical researches 
demonstrate that triggers such as infection and allergic reaction could lead to the onset or exacerbation of tic 
symptoms. Current studies have also suggested that neural-immune crosstalk caused by inflammation is also 
associated with TS, potentially leading to the occurrence of tics by inducing neurotransmitter abnormalities. Herein, 
we review inflammation-related factors contributing to the occurrence of TS as well as the mechanisms by which 
immune-inflammatory pathways mediate the onset of TS. This aims to clarify the pathogenesis of TS and provide a 
theoretical basis for the treatment of TS.
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focused on the pathogenesis of TS resulting from infec-
tions or allergic reactions.

How these abovementioned factors induce the develop-
ment of TS is not clear. Therefore, here, we briefly review 
the mechanisms by which inflammatory responses trig-
gered by bacteria, viruses, and allergens mediate an 
imbalance in neurotransmitters that leads to the onset of 
TS.

This article provides a narrative review focusing on 
inflammation-related factors contributing to the occur-
rence of TS and the mechanisms by which immune-
inflammatory pathways mediate tic onset. A systematic 
literature search was conducted in databases such as 
PubMed and Web of Science, including studies from the 
past two decades on the relationship between TS and 
immune-inflammatory pathways. The following key-
words were used: ‘Tourette syndrome’, ‘inflammation’, 
‘immune’, ‘microglia’, ‘neural-immune crosstalk’, ‘anti-
neuronal antibodies’, and ‘infection’. This review aims to 
integrate the current evidence on the immune-inflamma-
tory mechanisms underlying TS pathogenesis.

Etiology
Bacterial infection
Among the multiple bacterial strains, streptococcal infec-
tion is considered a recognized trigger of TS. Studies have 
indicated that TS is likely related to prior streptococcal 
infections [20, 21]. Among the numerous types of strep-
tococci, Group A streptococci (GAS) are the most closely 
associated with TS [22–25]. Group A beta-hemolytic 
streptococci (GABHS), the most common pathogenic 
strain of GAS in children, is associated with the onset of 
TS [26]. Studies have defined a separate category of TS 
known as pediatric autoimmune neuropsychiatric disor-
ders associated with streptococcal infections (PANDAS), 
based on the hypothesis that autoimmunity induces neu-
ropsychiatric symptoms [18]. Among children diagnosed 
with PANDAS, exacerbations and relapses of tic symp-
toms were linked to GABHS infections [18, 19]. If the 
PANDAS theory is confirmed, it would support the idea 
that tic disorders are related to streptococcal infections.

Staphylococcus aureus can also cause worsening of tic 
symptoms in patients with TS, and its pathogenesis is 
related to the immune response during bacterial clear-
ance [27]. Lung infections with bacteria, such as Pseu-
domonas aeruginosa, have been reported to cause the 
release of systemic cytokines and neuroinflammation, 
leading to behavioral changes in patients with TS [28]. 
Therefore, other bacteria that are expected to trigger TS 
are expected to be discovered in the future.

Viruses
The correlation between TS and viruses, such as entero-
virus (EV), human immunodeficiency virus, herpes 

simplex virus, varicella zoster virus, cytomegalovirus, 
coxsackievirus B, and severe acute respiratory syndrome 
coronavirus 2, has been reported in multiple studies 
[29–34]. During the COVID-19 pandemic, tic-like behav-
iors emerged in young people, indicating that COVID-19 
may also be associated with the occurrence of TS [31]. 
SARS-CoV-2, as a model of infection which could lead 
to neuroinflammation, may also play a significant role in 
triggering or exacerbating TS [35].

Other pathogens
Other pathogens associated with TS have also been 
reported, including Chlamydia trachomatis, Chlamydia 
pneumoniae, Mycoplasma pneumoniae, Toxoplasma gon-
dii, and Borrelia burgdorferi. B. burgdorferi and M. pneu-
moniae have been reported to induce tic exacerbations 
[25, 36–40].

Allergic reactions
Many studies have suggested that allergies may cause 
the onset of TS [41]. The prevalence of allergic diseases 
is higher in TS patients than in the general population 
[17, 42, 43]. A meta-analysis reported that tic syndrome 
was related to allergic diseases, such as allergic rhinitis, 
eczema, asthma, food allergy, and allergic conjunctivitis; 
however, it was not related to urticaria, atopic dermatitis, 
or drug allergy [44].

Children with TS were found to have positive skin tests 
and higher serum IgE levels, mainly against inhalation 
allergens, such as dust mite combinations, indicating the 
occurrence of allergic reactions [42, 45]. When allergens 
are encountered, plasma cells produce IgE, and histamine 
is released when IgE reacts with the allergen. High IgE 
levels are thought to result in allergic reactions as well as 
excessive release of inflammatory cytokines [45], which 
would damage striatal dopaminergic neurons, causing 
the disruption of dopaminergic signals, thereby causing 
tic disorders.

Pathogenesis
Inflammatory factors
Pathogens cause neurotransmitter imbalances through 
the following mechanisms. They can damage neurons by 
activating T cells to produce inflammatory factors or B 
cells to produce anti-neuronal antibodies. Both these fac-
tors may lead to the onset of TS. A lack of Treg cells was 
found in patients with TS, which enhanced the elimina-
tion of the infectious pathogen. Pathogenic infections 
can lead to hyperactivation of the peripheral immune 
system and release of excessive inflammatory factors. 
These inflammatory factors may lead to the dysfunction 
of neural-immune crosstalk, which may cause an imbal-
ance in neurotransmitters, such as DA and Glu, which 
can lead to tics. Pathogenic infections can also induce 
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the production of anti-neuronal antibodies by activating 
B cells. Anti-neuronal antibodies interact with neuronal 
surface antigens and activate microglia, leading to the 
damage of dopaminergic neurons, ultimately resulting in 
TS.

Production of inflammatory factors mediated by activation 
of the peripheral immune system
Impaired immune tolerance to self-antigens in patients 
with TS might result from a deficiency of Treg cells in TS 
patients [46], which may reduce the ability to suppress 
self-reactive T lymphocytes. Subsequently, an overacti-
vated autoimmune response enhances the elimination 
of infectious agents. When pathogens infect the body, 
overactivation of the autoimmune response leads to 
the massive release of inflammatory factors. Peripheral 
inflammatory factors can increase the permeability of 
the blood-brain barrier (BBB), possibly inducing a neu-
rotransmitter imbalance by affecting microglia or astro-
cytes, which in turn lead to the onset of TS.

Lack of treg cells in patients with TS A lack of Treg cells 
has been found in patients with TS, which might result in 
a lower ability to suppress self-reactive T lymphocytes, 
leading to impaired immune tolerance to self-antigens 
[46]. Self-reactive T lymphocytes play a role in defending 
against pathogenic infections and continue to be present 
in the peripheral immune cell repertoire [46]. Immune 
tolerance targets self-antigens and is maintained through 
various suppressive mechanisms. CD4(+) CD25(+) Treg 
cells, which inhibit self-reactive T lymphocyte responses 
to foreign antigens, can mediate peripheral tolerance to 
self-antigens [47]. The depletion of Treg cells increases 
the number of CD8 + T cells, enhancing the elimination 
of infectious pathogens [48]. In some cases, self-reactive 
lymphocytes can cause damage to the host [46].

Over activation of the peripheral immune sys-
tem Overactivation of the peripheral immune system has 
also been observed in patients with TS. Researchers have 
found an increase in the number of natural killer (NK) and 
CD8 + T cells, a reduction in CD4 + T cells, and a decrease 
in the CD4+/CD8 + ratio in patients [15, 49]. One study 
reported higher plasma IL-12 levels in patients [50, 51]. 
IL-12 has the ability to drive CD4 + T-cell differentiation 
into helper T (Th) cells and activate NK cells, indicating 
that the peripheral immune system of patients with TS is 
over-activated [52]. Another study indicated an increase 
in CD95 + Th cells in patients with TS, demonstrating that 
patients with TS present a hyperreactive immune state 
[53]. When CD95 (Fas) is activated, it induces cellular 
apoptosis to remove activated peripheral T cells through 
its interaction with the Fas ligand, which suggests an 
increase in peripheral immune activity [54].

Release of inflammatory factors Pathogenic infec-
tions may contribute to the onset of TS, which is medi-
ated by host T-cell immunity. Bacteria share epitopes with 
human self-antigens. When pathogens infect the human 
body, autoreactive T lymphocytes are activated, result-
ing in the development of autoimmunity and the inhibi-
tion of suppressive mechanisms [46, 55]. Subsequently, 
the suppressive mechanisms of Treg cells are overturned, 
and immune tolerance to self-antigens may be impaired, 
resulting in massive release of pro-inflammatory cyto-
kines [56]. Higher serum levels of soluble CD14 were 
detected in patients with TS and bacterial infections [57]. 
Soluble CD14 stimulates the production of inflamma-
tory cytokines that may increase bacterial resistance [58]. 
There are also studies showing that viruses stimulate the 
release of inflammatory factors, such as IL-6 and TNFα, 
in serum [59]. Previous studies have reported increased 
serum levels of pro-inflammatory cytokines, such as IL-6, 
TNFα, IFN-γ, IL-17, IL-12p70, and IL-1β in patients with 
TS, as well as IL-2 in those comorbid with OCD [15, 50, 
51, 60, 61]. Pro-inflammatory cytokines in the serum may 
cross the BBB and affect microglia and astrocytes in the 
brain, inducing neurotransmitter abnormalities, which in 
turn, may lead to the development of TS. Hence, we spec-
ulated that pathogenic infections may result in a hyper-
reactive immune state in the human body, which may 
induce the onset of TS.

Dysfunction of neural-immune crosstalk
Peripheral inflammatory factors can increase BBB 
permeability, allowing them to cross the BBB. These 
inflammatory factors may lead to the dysfunction of neu-
ral-immune crosstalk through the activation of microglia 
or other pathways, potentially leading to an imbalance in 
neurotransmitters and contributing to the onset of TS.

The activation of microglia caused by inflammatory 
factors IFN-γ, TNF-a, and IL-6 have been shown to be 
efficient at crossing the BBB, entering the cerebral vas-
culature or brain tissue [62–64]. The levels of IL-6 and 
TNF-α are upregulated in the brain tissue of rats with TS 
[65]. IL-6 and TNF-α damage the brain in different ways. 
TNF-α indirectly enhances the production of potentially 
neurotoxic metabolites, to disrupt brain development by 
adjusting neurotransmitter metabolism [66]. Microglia in 
the brain may be activated by pro-inflammatory cytokines 
from the serum, which may lead to an increase in neuro-
nal excitability and the release of more inflammatory fac-
tors in the brain [64]. Recent studies have suggested that 
microglia play an important role in neuroinflammation, 
which is associated with tic disorders.

The activation of microglia in the brain mainly results 
from higher levels of chemokine ligand 5 (CCL5) in the 
blood, upregulated genes related to immunity, and a 
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lack of histamine (HA). The following section provides 
a detailed description of the three pathways involved in 
microglial cell activation.

(1) Higher blood CCL5 levels: Pathogenic infections 
induce the overactivation of T lymphocytes [55]. CCL5, 
released by immune cells, such as T lymphocytes and 
macrophages, plays an important role in recruiting leu-
kocytes to inflammatory sites. A previous study reported 
higher blood CCL5 levels in patients with TS [67]. CCL5 
enters the brain by crossing the BBB and interacting with 
its receptors, C-C chemokine receptor type 5 (CCR5) 
and C-C chemokine receptor type 1 (CCR1). Neurologi-
cal impairments may result from CCL5-CCR1-mediated 
microglial activation through the CCR1/TPR1/ERK1/2 
signaling pathway [68]. CCL5 interacts with CCR5. The 
activation of CCR5 can promote neuronal pyroptosis via 
the CCR5/PKA/CREB/NLRP1 signaling pathway, which 
may cause neuronal impairment and induce the onset of 
tics [69].

(2) Upregulated genes related to immunity: One study 
reported upregulated hub genes, including intercellu-
lar adhesion molecule 1, C-C motif chemokine ligand 
2, heme oxygenase 1, MYC proto-oncogene, and sup-
pressor of cytokine signaling 3, in patients with TS [70]. 
Studies have found that the hub genes upregulated in 
TS are commonly related to immune and inflammatory 
pathways that involve the interleukin and interferon sig-
nalling pathways [70]. Another study also reported that 
the upregulated genes in the caudate and putamen of 
individuals are mostly immune-related genes, which are 
related to the activation of microglia and can induce the 
excessive release of inflammatory factors [71].

(3) The lack of HA: HA deficiency promotes the release 
of the inflammatory factors like IL-1β [72], while making 
microglia more susceptible to inflammatory challenge 
and promoting microglia M1 hyperpolarization. A lack 
of HA can also promote microglial activation, which has 
been proposed as a potential cause of TS. HA acts as an 
anti-inflammatory substance to inhibit lipopolysachha-
ride (LPS)-stimulated exacerbated microglial responses 
via histamine H4 receptor activation and inhibit the 
release of IL-1β [72]. HA also regulates microglial func-
tions [73]. Histidine decarboxylase (Hdc), an enzyme 
essential for HA synthesis, plays an important role in TS 
[72, 74]. A decreased number of IGF-1-positive microg-
lial cells were found in Hdc-knockout mice [73]. IGF-
1-positive microglia protect the brain. However, this 
protective function is weakened when the number of 
IGF-1-positive microglia is reduced. Consequently, HA 
deficiency renders microglial cells more vulnerable to 
inflammatory challenges mediated by LPS. Subsequently, 
microglia produce inflammatory factors that damage 
neurons and may lead to tics.

Microglia are divided into two types, namely M1-type 
and M2-type [75]. M1-type microglia, which are the 
classical pro-inflammatory type of microglia, release 
inflammatory factors and induce neuroinflammatory 
and neurotoxic responses [76]. All three approaches 
mentioned above can induce microglial M1 polariza-
tion. One study found that microglial M1 polarization 
may cause inflammatory impairment in striatal dopami-
nergic neurons [13]. Subsequently, dopaminergic signal-
ing is impaired, which may lead to the development of 
tics. These results indicate that the cooperation between 
dopamine dysregulation and immune dysfunction may 
be the underlying cause of TS (Fig. 1).

Other mechanisms of neural-immune crosstalk dys-
function caused by inflammatory factors Inflamma-
tory factors contribute to tics through other pathways. 
Inflammatory factors may affect astrocyte-neuron meta-
bolic coupling, or lead to dysfunction of the gut-brain 
axis, or may have an effect on the kynurenine pathway 
(KP) [29, 76–78]. All of these effects may disrupt the neu-
rotransmitter balance in the brain, which may lead to TS.

Astrocyte-neuron metabolic coupling could induce TS 
due to neuroimmune interactions. Astrocytes exhibit a 
neurotoxic phenotype in response to immunological and 
inflammatory conditions [76]. Dysfunction of astrocyte 
glutamate transporter 1 results in its loss of function in 
the regulation of corticostriatal synapses and leads to 
pathological repetitive behaviors [12, 79, 80].

Dysfunction of the gut-brain axis can influence ner-
vous system development, which may induce or aggra-
vate TS [77]. Streptococcal infections have the potential 
to modify the composition of the gut microbiota in the 
human body [81, 82]. Differences in the composition of 
the gut microbiota may influence the brain-gut axis and 
alter neurotransmitter levels, potentially contributing to 
TS symptoms [83]. A higher abundance of Prevotella has 
been reported to increase the levels of inflammatory fac-
tors in the gut [84], which may cross the BBB and impair 
the nervous system through the inflammasome signal-
ing pathway [85]. Increased levels of Odoribacter may 
result in a greater release of dopamine, leading to tics 
[81]. γ-aminobutyric acid (GABA), an inhibitory neu-
rotransmitter, is reported to be produced by Bifidobacte-
rium [86]. Bifidobacterium deficiency leads to a decrease 
in GABA levels in the primary sensorimotor cortex 
in patients with TS, probably causing allergies as well, 
thereby contributing to a higher risk of developing motor 
and vocal tics [87].

Neurotrophic infectious agents can activate tryptophan 
catabolism and increase the levels of pro-inflammatory 
cytokines, both of which may affect the neurotransmit-
ter balance in the brain through the KP [29, 78]. Trypto-
phan is degraded to kynurenine through the KP, which is 
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the main pathway for tryptophan breakdown [78]. These 
degradation products can act as N-methyl-D-aspartate 
(NMDA)-receptor antagonists, and have been reported 
to induce glutamatergic hypofunction and regulate neu-
rotransmitters [88]. Kynurenic acid, the only known 
endogenous NMDA antagonist, blocks nicotinergic 
acetylcholine receptors at low doses [88]. The KP may 
contribute to glutamatergic hypofunction and block nic-
otinergic acetylcholine receptors, leading to tic disorders.

Anti-neuronal antibodies
Anti-neuronal and antinuclear antibodies have been 
found in the serum of patients with neuropsychiatric 
symptoms, such as TS [89–91]. Pathogenic infections, 
particularly streptococcal infections, may induce the 
emergence of anti-neuronal antibodies [92–94],. Strep-
tococcal infections are thought to be associated with 
ABGA, as well as with TS [22, 27, 95, 96].

Anti-neuronal antibodies have been considered to 
cross-react with streptococci and antigens in the basal 
ganglia. The pathogenesis of TS-associated antibodies is 

speculated to involve cross-reactions between anti-neu-
ronal antibodies and the basal ganglia. Researchers have 
proposed a mechanism underlying the immune response 
against streptococcal infections. The GAS cell epitope is 
similar to lysoganglioside-GM1 and neuronal glycolytic 
enzymes (NGEs) [97]. One study confirmed that anti-
bodies against lysoganglioside-GM1 or pyruvate kinase 
(PK), a type of NGE, can react with the GAS cell epitope 
N-acetyl-beta-d-glucosamine [98, 99]. Therefore, when 
GAS infects the body, the anti-streptococcal antibodies 
produced react with neuronal surface antigens. We refer 
to these antibodies as anti-neuronal antibodies.

The cross-reactivity between IgG antibodies in serum 
from children with TS and brain tissue has mainly 
been observed in the CA3 subfields of the hippocam-
pus, the basal ganglia, the cerebellum, and the dentate 
gyrus (DG) [100]. A few special neuronal surface anti-
gens, such as dopamine-1 receptor (D1R), dopamine-2 
receptor (D2R), tubulin, lysoganglioside-GM1, NGE, 
hyperpolarization-activated cyclic nucleotide chan-
nel 4 (HCN4), contactin-associated protein-like 2, the 

Fig. 1 Overview of microglia M1 polarization–mediated tic onset. The activation of microglia mainly results from three processes, including increased 
chemokine ligand 5 (CCL5) levels in the blood, up-regulated immune-related genes, and a lack of histamine (HA). CCL5 in the blood may enter the brain 
and interact with its receptors, C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 1 (CCR1). The activation of CCR5 promotes 
neuronal pyroptosis through the CCR5/PKA/CREB/NLRP1 signaling pathway. The activation of CCR1 may result in neurological impairments through the 
CCR1/TPR1/ERK1/2 signaling pathway. Both of these pathways may cause neuronal impairment and induce the onset of tics. Up-regulated genes related 
to immunity and inflammation, including C-C motif chemokine ligand 2 (CCL2), intercellular adhesion molecule 1 (ICAM1), heme oxygenase 1 (HMOX1), 
MYC proto-oncogene (MYC), and suppressor of cytokine signaling 3 (SOCS3), are related to the activation of microglia. The lack of HA may lead to a de-
crease in the number of IGF-1-positive microglia cells, which have the function of protecting the brain. As a result, HA deficiency increases the susceptibil-
ity of microglial cells to inflammation triggered by lipopolysaccharide (LPS). M1-type microglia are known as pro-inflammatory microglia. Microglia M1 
hyperpolarization may lead to an increase in inflammatory cytokine levels and sustained neurotoxicity. Striatal dopaminergic neurons are then impaired, 
which may cause tic disorders, and tics may occur subsequently
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N-methyl-D-aspartate receptor (NMDAR), leucine-rich 
glioma-inactivated protein 1, the α-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor, and the 
γ-aminobutyric acid receptor-A/ the γ-aminobutyric acid 
receptor-B, have been shown to have more potential to 
bind with antibodies in patients with TS and related neu-
ropsychiatric disorders [97, 98, 100–112],.

With GAS invading the human body, individuals gen-
erate antibodies that recognize specific neuronal surface 
antigens within the striatum; subsequently, the cross-
reactivity of antibodies with the epitopes of the neuronal 
cells induces the impairment of neuronal function, such 

as brain reward circuits, ultimately causing tic disorders 
and other neuropsychiatric damage, which may explain 
the pathogenesis of TS [91, 113]. Specific neuronal sur-
face antigens that react with antibodies in patients with 
TS remain ambiguous. Therefore, the priority is to iden-
tify new autoantibodies against the neuronal surface anti-
gens [114].

Signaling pathways involving neural-immune crosstalk
Previous studies have shown that some signaling path-
ways are involved in TS-mediated neuroinflammation 
(Table  1). The Ca(2+)/calmodulin-dependent protein 

Table 1 Signaling pathways associated with TS mediated by neuroinflammation
Reference Pathway Function Method
 [116]
(Wu et al., 2023)

CaMKII/Drp1/ROS/NF-κB Microglia activation LPS-stimulated BV2 microglial 
cells

 [117]
(Huang et al., 2008)

JAK2/STAT3 Mediating microglia activation and dopaminergic 
neuron degeneration

Thrombin-stimulated rat primary 
microglia

 [118]
(Wu et al., 2022)

JAK2/STAT3/p65 Mediating neuroinflammation LPS-stimulated mouse hippo-
campal CA1 region and BV2 cells

 [119]
(Kim et al., 2006)

TLR4/STAT3 Inducing ICAM-1 expression, mediating microglia 
activation, pro-inflammatory actions

LPS-stimulated mice lacking 
functional TLR4

 [120]
(Zeng et al., 2014)

Akt/IκB/
NF-κB

Mediating neuroinflammation LPS-stimulated BV2 microglial 
cells

 [121]
(Kang et al., 2012)

PI3K/Akt/
NF-κB

Inducing pro-inflammatory mediators, NO, PGE(2) 
and TNF-α, and their regulatory genes

LPS-stimulated BV2 microglial 
cells

 [122]
(Hongyan et al., 2017a)

PI3K/Akt/
NF-κB

Increasing the levels of inflammatory cytokines, 
such as IL-6, IL-1β, and TNF-α, in the serum and 
striatum of rats

DOI-induced TS model in rats

 [123]
(Hongyan et al., 2017b)

TLR/MyD88/NF-κB Increasing the levels of inflammatory cytokines, 
such as IL-6, IL-1β, and TNF-α, in the serum and 
striatum of rats

DOI-induced TS model in rats,
LPS-stimulated rats

 [124]
(Long et al., 2019b)

BDNF/NF-κB Decreasing the BDNF-mediated increase in NF-κB 
levels; increasing IL-6, IL-1β, and TNF-α levels in the 
serum, striatum, and cell supernatant of rats with TS

DOI-induced BV2 cells; DOI-
induced TS model in rats

 [125]
(Xu et al., 2017)

BDNF/TrkB/
MyD88/NF-κB

Increasing TrkB expression levels, activating 
downstream PI3K/AKT signaling after BDNF pre-
treatment; inhibiting the MyD88/NF-κB signaling 
pathway; promoting the inflammatory response 
and hippocampal apoptosis

Pretreatment with exogenous 
BDNF or the TrkB inhibitor; 
intracisternal infection with live 
Streptococcus pneumoniae

 [126]
(Long et al., 2019a)

Nrf-2/HO‐1/HMGB1/NF‐кB Mediating neuroinflammation IPN-induced TS model in rats

 [127]
(Chunhui et al., 2017)

EGF/EGFR/Nrf-2/HO‐1/ NF‐кB Mediating inflammatory and oxidative injury osteoblast cells

 [128]
(Haddad, 2005)

NMDAR/
MAPK/CREB

Regulating the levels of amino acid neurotransmit-
ters; mediating the activation of microglia

DOI-induced TS model in rats; 
LPS-stimulated BV2 microglial 
cells

 [129]
(Hildonen et al., 2021)

PI3K/AKT/
mTOR

Affecting neuronal growth and proliferation; affect-
ing the release of
dopamine

An exploratory analysis of the 
genome-wide DNA methyla-
tion patterns in whole-blood 
samples of 16 monozygotic twin 
pairs with TS

Abbreviations: Akt: protein kinase B; BDNF: brain-derived neurotrophic factor; CaMKII: calcium-calmodulin dependent protein kinase II; CREB: cAMP-response 
element binding protein; DOI: 2,5-dimethoxy-4-iodoamphetamine; Drp1: dynamin-related protein 1; EGF: epidermal growth factor; EGFR: estimated glomerular 
filtration rate; HMGB1: high-mobility group protein B1; HO-1: heme oxygenase-1; ICAM-1: intercellular adhesion molecule-1; IL-1β: interleukin-1β; IL-6: interleukin-6;

IPN: 3,3’-iminodipropionitrile; IκB: NF-κB inhibitory protein; JAK2: Janus kinase 2; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; mTOR: 
mammalian target of rapamycin; MyD88: myeloid differentiation primary response gene 88; NF-κB: Nuclear factor-kappa B; NMDAR: N-methyl-D-aspartate; NO: 
nitric oxide; Nrf‐2: nuclear factor erythroid 2-related factor 2; PGE(2): prostaglandin E2; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; STAT3: signal 
transducer and activator of transcription 3; TLR4: Toll-like receptor 4; TNF-α: tumor necrosis factor-α; TrkB: tropomyosin-receptor kinase; TS: Tourette syndrome
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kinase II (CaMKII) signaling pathway, JAK-STAT path-
way, and NF-κB pathway are crucial pathways involved 
in the processes of neuroinflammation resulting from the 
activation of microglia [115].

CaMKII signaling pathway
The activation of calcium-calmodulin-dependent pro-
tein kinase II (CaMKII) has been linked to movement 
disorders, such as TS [99, 104, 107, 130]. CaMKII acti-
vation can be induced by anti-neuronal antibodies or 
NMDAR. CaMKII activation has been reported to be 
induced by the reactivity of antibodies against the neu-
ronal cell surface and caudate-putamen. The activation 
of NMDAR allows Ca2+ and Na+ influx into cells, lead-
ing to the activation of CaMKII [131]. The activation of 
CaMKII can mediate inflammatory responses through 
the ERK/p65/STAT3 or Drp1/ROS/NF-κB pathways, and 
can also affect dopamine release through the regulation 
of tyrosine hydroxylase. The CaMKII/ERK/p65/STAT3 
signaling pathway is closely associated with inflamma-
tion and induces neurotoxicity in dopaminergic neuronal 
cells [132]. The CaMKII/Drp1/ROS/NF-κB pathway also 
activates microglia towards pro-inflammatory M1 polar-
ization after stimulation with LPS [116]. CaMKII activa-
tion leads to increased tyrosine hydroxylase levels and 
subsequent dopamine release. CaMKII also regulates the 
excitability of NMDAR via Glu transmission [133]. Even-
tually, antibody-mediated CaMKII activation may result 
in movement disorders, such as TS [109, 134].

JAK2/STAT3 pathway
JAK2/STAT3 is considered one of the most important 
inflammatory pathways that induces the expression of 
inflammation-related genes. The JAK2/STAT3 pathway is 
activated by inflammatory factors produced in response 
to pathogen stimulation. Activation of the JAK2/STAT3 
pathway may, in turn, regulate the release of inflamma-
tory factors and interact with downstream transcription 
factors, such as NF-κB p65, to modulate the inflamma-
tory response. IL-1β, TNF-α, and IL-6 produced in an 
inflammatory surrounding may activate JAK/STAT 
signaling, which in turn, can regulate the release of a 
number of inflammatory cytokines, which may cause 
neurological damage [118, 135, 136]. Among the JAK2/
STAT3 pathway members, STAT3 (signal transducer 
and activator of transcription 3), a key transcription fac-
tor regulating inflammation, can lead to elevated lev-
els of inflammatory cytokines in the brain [119, 137]. 
LPS can lead to STAT3 phosphorylation [118, 138, 139], 
after which, STAT3 translocates to the nucleus and acts 
as a transcription factor, inducing the expression of 
inflammatory genes. The phosphorylation of STAT may 
cause the phosphorylation of Janus kinase, and regulate 
the inflammatory response by interacting with other 

transcription factors, such as NF-κB p65. LPS induces 
microglial activation through the JAK2/STAT3 pathway, 
which regulates the release of inflammatory cytokines 
[140]. Subsequently, the release of neurotransmitters was 
regulated, which may lead to the onset of TS [117, 141, 
142].

NF-κB pathway
Microglia can be activated by LPS through the NF-κB 
signaling pathway, leading to neuroinflammation [120]. 
Many pathways, such as the PI3K/Akt, TLR/NLRP3, 
TLR/MyD88, BDNF/TrkB/MyD88, EGF/EGFR, and 
Nrf-2/HO-1 pathways, have been shown to regulate 
NF-κB. PI3K/Akt regulates the NF-κB pathway through 
the phosphorylation of Akt [121, 122]. Activation of 
the TLR/NLRP3/NF-κB pathway has been reported to 
induce inflammation in rat models [123, 143, 144]. The 
TLR/MyD88/NF-κB pathway has also been shown to be 
involved in the pathogenesis of TS [123]. Brain-derived 
neurotrophic factor (BDNF) combined (Trk) receptor, 
BDNF-tropomyosin-receptor kinase B (TrkB) signaling 
pathway plays a crucial role in the development of TS 
by activating the MyD88/NF-κB pathway to regulate the 
inflammatory response [124, 125, 145]. Inhibition of the 
Nrf-2/HO‐1 pathway can also lead to activation of the 
NF‐кB pathway [126]. Inhibition of the EGF/EGFR path-
way may activate the NF-κB pathway by inhibiting the 
Nrf-2/HO-1 pathway, which is involved in inflammation 
and oxidative stress regulation [127].

Other pathways related to TS
The NMDAR/MAPK/CREB pathway plays an important 
role in the development of TS. Mitogen-activated protein 
kinase (MAPK) is reported to play important roles in the 
release of inflammatory cytokines. MAPKs, including 
c-Jun terminal kinase (JNK), extracellular signal-regu-
lated protein kinase (ERK) and p38, regulate the expres-
sion of inflammatory genes [121, 146]. Glu, the release of 
which is mediated by NMDA receptors, is associated with 
tic syndromes [147]. Hence, the NMDA-MAPK pathway 
may lead to TS through the release of inflammatory cyto-
kines and Glu [128]. The PI3K/AKT/mTOR pathway may 
also be involved in TS pathogenesis [129]. Dopamine 
release and neuronal growth are regulated by mTOR sig-
naling. The absence of mTOR in the ventral tegmental 
area alters the balance of neurotransmitters and reduces 
dopamine levels [148]. In one study, increased levels of 
FLT3 were observed in patients with TS [149]. Single 
nucleotide polymorphisms (SNPs) located in the recep-
tor tyrosine kinase gene FLT3 have been found to activate 
the PI3K/AKT/mTOR pathway [150].
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Conclusions
TS is a neuropsychiatric disorder associated with 
inflammation-mediated immune response. This article 
describes the pathogenesis of TS associated with immune 
responses caused by infection or allergy. Previously, it 
was found that abnormalities in the CSTC circuit lead 
to the onset of tics, which are mainly associated with an 
imbalance in neurotransmitters. Genetic and environ-
mental factors are also involved in the pathogenesis of 
TS. Inflammation-mediated immune responses can also 
cause tics, as has been confirmed in numerous clinical 
and animal studies. Triggers that contribute to the devel-
opment of tics via inflammatory responses include viral 
and bacterial infections and allergic reactions. Based on 
the findings of previous studies, we created a diagram to 
summarize the underlying mechanism of TS associated 
with inflammation (Fig. 2). The neurotransmitter imbal-
ance in TS, mediated by neuroinflammation, is a research 
hotspot involving dopamine and Glu. Tic disorders 
induced by infection or allergic reactions are commonly 
observed in clinical practice. Large-sample randomized 
controlled trials or cohort studies should be conducted 
to further demonstrate the impact of inflammation-
related factors on the onset of tics, which will provide the 

foundation for exploring novel therapeutic approaches to 
TS.
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