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Abstract

theoretical basis for the treatment of TS.

Tourette syndrome (TS), a neurological and psychological disease, typically exhibit motor and phonic tics. The
pathophysiology of TS remains controversial. Currently, the recognized pathogenesis of TS is the imbalance of
neurotransmitters, involving abnormality of the cortex-striatum-thalamus-cortex circuit. Recently, clinical researches
demonstrate that triggers such as infection and allergic reaction could lead to the onset or exacerbation of tic
symptoms. Current studies have also suggested that neural-immune crosstalk caused by inflammation is also
associated with TS, potentially leading to the occurrence of tics by inducing neurotransmitter abnormalities. Herein,
we review inflammation-related factors contributing to the occurrence of TS as well as the mechanisms by which
immune-inflammatory pathways mediate the onset of TS. This aims to clarify the pathogenesis of TS and provide a
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Introduction

Tourette syndrome (TS) is a neurodevelopmental dis-
order that begins in childhood and is characterized by
numerous involuntary motor and vocal tics lasting over
a year [1]. Approximately 0.3-1% of the population is
affected by TS [2]. TS frequently co-occurs with attention
deficit/hyperactivity disorder, obsessive-compulsive dis-
order (OCD), and other psychological problems [3, 4]. TS
can affect daily life, severely affecting physical and mental
health, causing a decline in academic performance, and
even leading to social impairment.
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Research on the pathogenesis of TS has involved the
investigation of genetics; neurotransmitters; and environ-
mental, immunological, and other factors [5-7]. Among
these, an imbalance in neurotransmitter levels is one of
the most recognized pathogenic mechanisms. Studies
have shown that tics may result from the loss of inhibi-
tion of motor cortical neurons and dysfunction of the
cortex-striatum-thalamus-cortex (CSTC) circuit [8-10].
As the main neurotransmitters of the CSTC circuit,
dopamine (DA) and glutamate (Glu) have been shown to
be associated with the onset of TS [11-13].

In recent years, increasing evidence has indicated that
neuroinflammation is mediated by infections or allergic
reactions during the pathogenesis of TS and other neuro-
psychiatric disorders [14, 15]. Studies have demonstrated
that there is a subset of patients with TS in whom tic
symptoms are induced by infections or allergic reactions
[16, 17]. In addition, most patients with TS present exac-
erbated symptoms after pathogenic infections or allergic
reactions [18, 19]. Some clinical and basic studies have
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focused on the pathogenesis of TS resulting from infec-
tions or allergic reactions.

How these abovementioned factors induce the develop-
ment of TS is not clear. Therefore, here, we briefly review
the mechanisms by which inflammatory responses trig-
gered by bacteria, viruses, and allergens mediate an
imbalance in neurotransmitters that leads to the onset of
TS.

This article provides a narrative review focusing on
inflammation-related factors contributing to the occur-
rence of TS and the mechanisms by which immune-
inflammatory pathways mediate tic onset. A systematic
literature search was conducted in databases such as
PubMed and Web of Science, including studies from the
past two decades on the relationship between TS and
immune-inflammatory pathways. The following key-
words were used: ‘Tourette syndrome, ‘inflammation;
‘immune; ‘microglia, ‘neural-immune crosstalk, ‘anti-
neuronal antibodies; and ‘infection’ This review aims to
integrate the current evidence on the immune-inflamma-
tory mechanisms underlying TS pathogenesis.

Etiology
Bacterial infection
Among the multiple bacterial strains, streptococcal infec-
tion is considered a recognized trigger of TS. Studies have
indicated that TS is likely related to prior streptococcal
infections [20, 21]. Among the numerous types of strep-
tococci, Group A streptococci (GAS) are the most closely
associated with TS [22-25]. Group A beta-hemolytic
streptococci (GABHS), the most common pathogenic
strain of GAS in children, is associated with the onset of
TS [26]. Studies have defined a separate category of TS
known as pediatric autoimmune neuropsychiatric disor-
ders associated with streptococcal infections (PANDAS),
based on the hypothesis that autoimmunity induces neu-
ropsychiatric symptoms [18]. Among children diagnosed
with PANDAS, exacerbations and relapses of tic symp-
toms were linked to GABHS infections [18, 19]. If the
PANDAS theory is confirmed, it would support the idea
that tic disorders are related to streptococcal infections.
Staphylococcus aureus can also cause worsening of tic
symptoms in patients with TS, and its pathogenesis is
related to the immune response during bacterial clear-
ance [27]. Lung infections with bacteria, such as Pseu-
domonas aeruginosa, have been reported to cause the
release of systemic cytokines and neuroinflammation,
leading to behavioral changes in patients with TS [28].
Therefore, other bacteria that are expected to trigger TS
are expected to be discovered in the future.

Viruses
The correlation between TS and viruses, such as entero-
virus (EV), human immunodeficiency virus, herpes
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simplex virus, varicella zoster virus, cytomegalovirus,
coxsackievirus B, and severe acute respiratory syndrome
coronavirus 2, has been reported in multiple studies
[29-34]. During the COVID-19 pandemic, tic-like behav-
iors emerged in young people, indicating that COVID-19
may also be associated with the occurrence of TS [31].
SARS-CoV-2, as a model of infection which could lead
to neuroinflammation, may also play a significant role in
triggering or exacerbating T'S [35].

Other pathogens

Other pathogens associated with TS have also been
reported, including Chlamydia trachomatis, Chlamydia
pneumoniae, Mycoplasma pneumoniae, Toxoplasma gon-
dii, and Borrelia burgdorferi. B. burgdorferi and M. pneu-
moniae have been reported to induce tic exacerbations
[25, 36-40].

Allergic reactions

Many studies have suggested that allergies may cause
the onset of TS [41]. The prevalence of allergic diseases
is higher in TS patients than in the general population
[17, 42, 43]. A meta-analysis reported that tic syndrome
was related to allergic diseases, such as allergic rhinitis,
eczema, asthma, food allergy, and allergic conjunctivitis;
however, it was not related to urticaria, atopic dermatitis,
or drug allergy [44].

Children with TS were found to have positive skin tests
and higher serum IgE levels, mainly against inhalation
allergens, such as dust mite combinations, indicating the
occurrence of allergic reactions [42, 45]. When allergens
are encountered, plasma cells produce IgE, and histamine
is released when IgE reacts with the allergen. High IgE
levels are thought to result in allergic reactions as well as
excessive release of inflammatory cytokines [45], which
would damage striatal dopaminergic neurons, causing
the disruption of dopaminergic signals, thereby causing
tic disorders.

Pathogenesis

Inflammatory factors

Pathogens cause neurotransmitter imbalances through
the following mechanisms. They can damage neurons by
activating T cells to produce inflammatory factors or B
cells to produce anti-neuronal antibodies. Both these fac-
tors may lead to the onset of TS. A lack of Treg cells was
found in patients with TS, which enhanced the elimina-
tion of the infectious pathogen. Pathogenic infections
can lead to hyperactivation of the peripheral immune
system and release of excessive inflammatory factors.
These inflammatory factors may lead to the dysfunction
of neural-immune crosstalk, which may cause an imbal-
ance in neurotransmitters, such as DA and Glu, which
can lead to tics. Pathogenic infections can also induce
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the production of anti-neuronal antibodies by activating
B cells. Anti-neuronal antibodies interact with neuronal
surface antigens and activate microglia, leading to the
damage of dopaminergic neurons, ultimately resulting in
TS.

Production of inflammatory factors mediated by activation
of the peripheral inmune system

Impaired immune tolerance to self-antigens in patients
with TS might result from a deficiency of Treg cells in TS
patients [46], which may reduce the ability to suppress
self-reactive T lymphocytes. Subsequently, an overacti-
vated autoimmune response enhances the elimination
of infectious agents. When pathogens infect the body,
overactivation of the autoimmune response leads to
the massive release of inflammatory factors. Peripheral
inflammatory factors can increase the permeability of
the blood-brain barrier (BBB), possibly inducing a neu-
rotransmitter imbalance by affecting microglia or astro-
cytes, which in turn lead to the onset of TS.

Lack of treg cells in patients with TS A lack of Treg cells
has been found in patients with TS, which might result in
a lower ability to suppress self-reactive T lymphocytes,
leading to impaired immune tolerance to self-antigens
[46]. Self-reactive T lymphocytes play a role in defending
against pathogenic infections and continue to be present
in the peripheral immune cell repertoire [46]. Immune
tolerance targets self-antigens and is maintained through
various suppressive mechanisms. CD4(+) CD25(+) Treg
cells, which inhibit self-reactive T lymphocyte responses
to foreign antigens, can mediate peripheral tolerance to
self-antigens [47]. The depletion of Treg cells increases
the number of CD8+T cells, enhancing the elimination
of infectious pathogens [48]. In some cases, self-reactive
lymphocytes can cause damage to the host [46].

Over activation of the peripheral immune sys-
tem Overactivation of the peripheral immune system has
also been observed in patients with TS. Researchers have
found an increase in the number of natural killer (NK) and
CD8+T cells, a reduction in CD4 + T cells, and a decrease
in the CD4+/CD8 +ratio in patients [15, 49]. One study
reported higher plasma IL-12 levels in patients [50, 51].
IL-12 has the ability to drive CD4 + T-cell differentiation
into helper T (Th) cells and activate NK cells, indicating
that the peripheral immune system of patients with TS is
over-activated [52]. Another study indicated an increase
in CD95 + Th cells in patients with TS, demonstrating that
patients with TS present a hyperreactive immune state
[53]. When CD95 (Fas) is activated, it induces cellular
apoptosis to remove activated peripheral T cells through
its interaction with the Fas ligand, which suggests an
increase in peripheral immune activity [54].
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Release of inflammatory factors Pathogenic infec-
tions may contribute to the onset of TS, which is medi-
ated by host T-cell immunity. Bacteria share epitopes with
human self-antigens. When pathogens infect the human
body, autoreactive T lymphocytes are activated, result-
ing in the development of autoimmunity and the inhibi-
tion of suppressive mechanisms [46, 55]. Subsequently,
the suppressive mechanisms of Treg cells are overturned,
and immune tolerance to self-antigens may be impaired,
resulting in massive release of pro-inflammatory cyto-
kines [56]. Higher serum levels of soluble CD14 were
detected in patients with TS and bacterial infections [57].
Soluble CD14 stimulates the production of inflamma-
tory cytokines that may increase bacterial resistance [58].
There are also studies showing that viruses stimulate the
release of inflammatory factors, such as IL-6 and TNFa,
in serum [59]. Previous studies have reported increased
serum levels of pro-inflammatory cytokines, such as IL-6,
TNFa, IFN-y, IL-17, IL-12p70, and IL-1p in patients with
TS, as well as IL-2 in those comorbid with OCD [15, 50,
51, 60, 61]. Pro-inflammatory cytokines in the serum may
cross the BBB and affect microglia and astrocytes in the
brain, inducing neurotransmitter abnormalities, which in
turn, may lead to the development of TS. Hence, we spec-
ulated that pathogenic infections may result in a hyper-
reactive immune state in the human body, which may
induce the onset of TS.

Dysfunction of neural-immune crosstalk

Peripheral inflammatory factors can increase BBB
permeability, allowing them to cross the BBB. These
inflammatory factors may lead to the dysfunction of neu-
ral-immune crosstalk through the activation of microglia
or other pathways, potentially leading to an imbalance in
neurotransmitters and contributing to the onset of TS.

The activation of microglia caused by inflammatory
factors IFN-y, TNF-a, and IL-6 have been shown to be
efficient at crossing the BBB, entering the cerebral vas-
culature or brain tissue [62-64]. The levels of IL-6 and
TNE-a are upregulated in the brain tissue of rats with TS
[65]. IL-6 and TNF-a damage the brain in different ways.
TNF-« indirectly enhances the production of potentially
neurotoxic metabolites, to disrupt brain development by
adjusting neurotransmitter metabolism [66]. Microglia in
the brain may be activated by pro-inflammatory cytokines
from the serum, which may lead to an increase in neuro-
nal excitability and the release of more inflammatory fac-
tors in the brain [64]. Recent studies have suggested that
microglia play an important role in neuroinflammation,
which is associated with tic disorders.

The activation of microglia in the brain mainly results
from higher levels of chemokine ligand 5 (CCL5) in the
blood, upregulated genes related to immunity, and a
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lack of histamine (HA). The following section provides
a detailed description of the three pathways involved in
microglial cell activation.

(1) Higher blood CCL5 levels: Pathogenic infections
induce the overactivation of T lymphocytes [55]. CCL5,
released by immune cells, such as T lymphocytes and
macrophages, plays an important role in recruiting leu-
kocytes to inflammatory sites. A previous study reported
higher blood CCLS5 levels in patients with TS [67]. CCL5
enters the brain by crossing the BBB and interacting with
its receptors, C-C chemokine receptor type 5 (CCR5)
and C-C chemokine receptor type 1 (CCR1). Neurologi-
cal impairments may result from CCL5-CCR1-mediated
microglial activation through the CCR1/TPR1/ERK1/2
signaling pathway [68]. CCL5 interacts with CCR5. The
activation of CCR5 can promote neuronal pyroptosis via
the CCR5/PKA/CREB/NLRP1 signaling pathway, which
may cause neuronal impairment and induce the onset of
tics [69].

(2) Upregulated genes related to immunity: One study
reported upregulated hub genes, including intercellu-
lar adhesion molecule 1, C-C motif chemokine ligand
2, heme oxygenase 1, MYC proto-oncogene, and sup-
pressor of cytokine signaling 3, in patients with TS [70].
Studies have found that the hub genes upregulated in
TS are commonly related to immune and inflammatory
pathways that involve the interleukin and interferon sig-
nalling pathways [70]. Another study also reported that
the upregulated genes in the caudate and putamen of
individuals are mostly immune-related genes, which are
related to the activation of microglia and can induce the
excessive release of inflammatory factors [71].

(3) The lack of HA: HA deficiency promotes the release
of the inflammatory factors like IL-1 [72], while making
microglia more susceptible to inflammatory challenge
and promoting microglia M1 hyperpolarization. A lack
of HA can also promote microglial activation, which has
been proposed as a potential cause of TS. HA acts as an
anti-inflammatory substance to inhibit lipopolysachha-
ride (LPS)-stimulated exacerbated microglial responses
via histamine H4 receptor activation and inhibit the
release of IL-1B [72]. HA also regulates microglial func-
tions [73]. Histidine decarboxylase (Hdc), an enzyme
essential for HA synthesis, plays an important role in TS
[72, 74]. A decreased number of IGF-1-positive microg-
lial cells were found in Hdc-knockout mice [73]. IGF-
1-positive microglia protect the brain. However, this
protective function is weakened when the number of
IGF-1-positive microglia is reduced. Consequently, HA
deficiency renders microglial cells more vulnerable to
inflammatory challenges mediated by LPS. Subsequently,
microglia produce inflammatory factors that damage
neurons and may lead to tics.
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Microglia are divided into two types, namely M1-type
and M2-type [75]. M1-type microglia, which are the
classical pro-inflammatory type of microglia, release
inflammatory factors and induce neuroinflammatory
and neurotoxic responses [76]. All three approaches
mentioned above can induce microglial M1 polariza-
tion. One study found that microglial M1 polarization
may cause inflammatory impairment in striatal dopami-
nergic neurons [13]. Subsequently, dopaminergic signal-
ing is impaired, which may lead to the development of
tics. These results indicate that the cooperation between
dopamine dysregulation and immune dysfunction may
be the underlying cause of TS (Fig. 1).

Other mechanisms of neural-immune crosstalk dys-
function caused by inflammatory factors Inflamma-
tory factors contribute to tics through other pathways.
Inflammatory factors may affect astrocyte-neuron meta-
bolic coupling, or lead to dysfunction of the gut-brain
axis, or may have an effect on the kynurenine pathway
(KP) [29, 76-78]. All of these effects may disrupt the neu-
rotransmitter balance in the brain, which may lead to TS.

Astrocyte-neuron metabolic coupling could induce TS
due to neuroimmune interactions. Astrocytes exhibit a
neurotoxic phenotype in response to immunological and
inflammatory conditions [76]. Dysfunction of astrocyte
glutamate transporter 1 results in its loss of function in
the regulation of corticostriatal synapses and leads to
pathological repetitive behaviors [12, 79, 80].

Dysfunction of the gut-brain axis can influence ner-
vous system development, which may induce or aggra-
vate TS [77]. Streptococcal infections have the potential
to modify the composition of the gut microbiota in the
human body [81, 82]. Differences in the composition of
the gut microbiota may influence the brain-gut axis and
alter neurotransmitter levels, potentially contributing to
TS symptoms [83]. A higher abundance of Prevotella has
been reported to increase the levels of inflammatory fac-
tors in the gut [84], which may cross the BBB and impair
the nervous system through the inflammasome signal-
ing pathway [85]. Increased levels of Odoribacter may
result in a greater release of dopamine, leading to tics
[81]. y-aminobutyric acid (GABA), an inhibitory neu-
rotransmitter, is reported to be produced by Bifidobacte-
rium [86). Bifidobacterium deficiency leads to a decrease
in GABA levels in the primary sensorimotor cortex
in patients with TS, probably causing allergies as well,
thereby contributing to a higher risk of developing motor
and vocal tics [87].

Neurotrophic infectious agents can activate tryptophan
catabolism and increase the levels of pro-inflammatory
cytokines, both of which may affect the neurotransmit-
ter balance in the brain through the KP [29, 78]. Trypto-
phan is degraded to kynurenine through the KP, which is
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Fig. 1 Overview of microglia M1 polarization-mediated tic onset. The activation of microglia mainly results from three processes, including increased
chemokine ligand 5 (CCL5) levels in the blood, up-regulated immune-related genes, and a lack of histamine (HA). CCL5 in the blood may enter the brain
and interact with its receptors, C-C chemokine receptor type 5 (CCR5) and C-C chemokine receptor type 1 (CCR1). The activation of CCR5 promotes
neuronal pyroptosis through the CCR5/PKA/CREB/NLRP1 signaling pathway. The activation of CCR1 may result in neurological impairments through the
CCR1/TPR1/ERK1/2 signaling pathway. Both of these pathways may cause neuronal impairment and induce the onset of tics. Up-regulated genes related
to immunity and inflammation, including C-C motif chemokine ligand 2 (CCL2), intercellular adhesion molecule 1 (ICAM1), heme oxygenase 1 (HMOX1),
MYC proto-oncogene (MYC), and suppressor of cytokine signaling 3 (SOCS3), are related to the activation of microglia. The lack of HA may lead to a de-
crease in the number of IGF-1-positive microglia cells, which have the function of protecting the brain. As a result, HA deficiency increases the susceptibil-
ity of microglial cells to inflammation triggered by lipopolysaccharide (LPS). M1-type microglia are known as pro-inflammatory microglia. Microglia M1
hyperpolarization may lead to an increase in inflammatory cytokine levels and sustained neurotoxicity. Striatal dopaminergic neurons are then impaired,

which may cause tic disorders, and tics may occur subsequently

the main pathway for tryptophan breakdown [78]. These
degradation products can act as N-methyl-D-aspartate
(NMDA)-receptor antagonists, and have been reported
to induce glutamatergic hypofunction and regulate neu-
rotransmitters [88]. Kynurenic acid, the only known
endogenous NMDA antagonist, blocks nicotinergic
acetylcholine receptors at low doses [88]. The KP may
contribute to glutamatergic hypofunction and block nic-
otinergic acetylcholine receptors, leading to tic disorders.

Anti-neuronal antibodies
Anti-neuronal and antinuclear antibodies have been
found in the serum of patients with neuropsychiatric
symptoms, such as TS [89-91]. Pathogenic infections,
particularly streptococcal infections, may induce the
emergence of anti-neuronal antibodies [92-94],. Strep-
tococcal infections are thought to be associated with
ABGA, as well as with TS [22, 27, 95, 96].

Anti-neuronal antibodies have been considered to
cross-react with streptococci and antigens in the basal
ganglia. The pathogenesis of TS-associated antibodies is

speculated to involve cross-reactions between anti-neu-
ronal antibodies and the basal ganglia. Researchers have
proposed a mechanism underlying the immune response
against streptococcal infections. The GAS cell epitope is
similar to lysoganglioside-GM1 and neuronal glycolytic
enzymes (NGEs) [97]. One study confirmed that anti-
bodies against lysoganglioside-GM1 or pyruvate kinase
(PK), a type of NGE, can react with the GAS cell epitope
N-acetyl-beta-d-glucosamine [98, 99]. Therefore, when
GAS infects the body, the anti-streptococcal antibodies
produced react with neuronal surface antigens. We refer
to these antibodies as anti-neuronal antibodies.

The cross-reactivity between IgG antibodies in serum
from children with TS and brain tissue has mainly
been observed in the CA3 subfields of the hippocam-
pus, the basal ganglia, the cerebellum, and the dentate
gyrus (DG) [100]. A few special neuronal surface anti-
gens, such as dopamine-1 receptor (D1R), dopamine-2
receptor (D2R), tubulin, lysoganglioside-GM1, NGE,
hyperpolarization-activated cyclic nucleotide chan-
nel 4 (HCN4), contactin-associated protein-like 2, the
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N-methyl-D-aspartate receptor (NMDAR), leucine-rich
glioma-inactivated protein 1, the o-amino-3-hydroxy-
5-methyl-4-isoxazolepropionic acid receptor, and the
y-aminobutyric acid receptor-A/ the y-aminobutyric acid
receptor-B, have been shown to have more potential to
bind with antibodies in patients with TS and related neu-
ropsychiatric disorders [97, 98, 100-112],.

With GAS invading the human body, individuals gen-
erate antibodies that recognize specific neuronal surface
antigens within the striatum; subsequently, the cross-
reactivity of antibodies with the epitopes of the neuronal
cells induces the impairment of neuronal function, such
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as brain reward circuits, ultimately causing tic disorders
and other neuropsychiatric damage, which may explain
the pathogenesis of TS [91, 113]. Specific neuronal sur-
face antigens that react with antibodies in patients with
TS remain ambiguous. Therefore, the priority is to iden-
tify new autoantibodies against the neuronal surface anti-
gens [114].

Signaling pathways involving neural-immune crosstalk

Previous studies have shown that some signaling path-
ways are involved in TS-mediated neuroinflammation
(Table 1). The Ca(2+)/calmodulin-dependent protein

Table 1 Signaling pathways associated with TS mediated by neuroinflammation

Reference Pathway Function Method
[11€] CaMKIl/Drp1/ROS/NF-kB Microglia activation LPS-stimulated BV2 microglial
(Wu et al,, 2023) cells

[117] JAK2/STAT3
(Huang et al,, 2008)

[118] JAK2/STAT3/p65
(Wu etal, 2022)

[119] TLR4/STAT3
(Kim et al.,, 2006)

[120] Akt/IkB/
(Zeng et al, 2014) NF-«B
[21] PI3K/Akt/
(Kang et al., 2012) NF-kB
[122] PI3K/Akt/
(Hongyan et al,, 2017a) NF-kB

Mediating microglia activation and dopaminergic
neuron degeneration

Mediating neuroinflammation

Inducing ICAM-1 expression, mediating microglia
activation, pro-inflammatory actions
Mediating neuroinflammation

Inducing pro-inflammatory mediators, NO, PGE(2)
and TNF-a, and their regulatory genes cells
Increasing the levels of inflammatory cytokines,
such as IL-6, IL-13, and TNF-q, in the serum and

Thrombin-stimulated rat primary
microglia

LPS-stimulated mouse hippo-
campal CAT region and BV2 cells

LPS-stimulated mice lacking
functional TLR4

LPS-stimulated BV2 microglial
cells

LPS-stimulated BV2 microglial

DOl-induced TS model in rats

striatum of rats

[123]
(Hongyan et al,, 2017b)

TLR/MyD88/NF-kB

Increasing the levels of inflammatory cytokines,
such as IL-6, IL-13, and TNF-q, in the serum and

DOl-induced TS model in rats,
LPS-stimulated rats

striatum of rats

Decreasing the BDNF-mediated increase in NF-kB
levels; increasing IL-6, IL-1(3, and TNF-a levels in the

DOl-induced BV2 cells; DOI-
induced TS model in rats

serum, striatum, and cell supernatant of rats with TS

[124] BDNF/NF-kB
(Long et al, 2019b)
[125] BDNF/TrkB/

(Xu etal, 2017) MyD88/NF-kB

Increasing TrkB expression levels, activating

downstream PI3K/AKT signaling after BDNF pre-
treatment; inhibiting the MyD88/NF-kB signaling
pathway; promoting the inflammatory response

Pretreatment with exogenous
BDNF or the TrkB inhibitor;
intracisternal infection with live
Streptococcus pneumoniae

and hippocampal apoptosis

[126] Nrf-2/HO-1/HMGB1/NF-kB
(Long et al., 2019a)

[127] EGF/EGFR/Nrf-2/HO-1/ NF-kB
(Chunhui et al, 2017)

[128] NMDAR/

(Haddad, 2005) MAPK/CREB

[129] PI3K/AKT/

(Hildonen et al., 2021) mTOR

dopamine

Mediating neuroinflammation
Mediating inflammatory and oxidative injury

Regulating the levels of amino acid neurotransmit-
ters; mediating the activation of microglia

Affecting neuronal growth and proliferation; affect-
ing the release of

IPN-induced TS model in rats
osteoblast cells

DOl-induced TS model in rats;
LPS-stimulated BV2 microglial
cells

An exploratory analysis of the
genome-wide DNA methyla-
tion patterns in whole-blood
samples of 16 monozygotic twin
pairs with TS

Abbreviations: Akt: protein kinase B; BDNF: brain-derived neurotrophic factor; CaMKII: calcium-calmodulin dependent protein kinase Il; CREB: cAMP-response
element binding protein; DOI: 2,5-dimethoxy-4-iodoamphetamine; Drp1: dynamin-related protein 1; EGF: epidermal growth factor; EGFR: estimated glomerular
filtration rate; HMGB1: high-mobility group protein B1; HO-1: heme oxygenase-1; ICAM-1: intercellular adhesion molecule-1; IL-1B: interleukin-16; IL-6: interleukin-6;

IPN: 3,3-iminodipropionitrile; IkB: NF-kB inhibitory protein; JAK2: Janus kinase 2; LPS: lipopolysaccharide; MAPK: mitogen-activated protein kinase; mTOR:
mammalian target of rapamycin; MyD88: myeloid differentiation primary response gene 88; NF-kB: Nuclear factor-kappa B; NMDAR: N-methyl-D-aspartate; NO:
nitric oxide; Nrf-2: nuclear factor erythroid 2-related factor 2; PGE(2): prostaglandin E2; PI3K: phosphoinositide 3-kinase; ROS: reactive oxygen species; STAT3: signal
transducer and activator of transcription 3; TLR4: Toll-like receptor 4; TNF-a: tumor necrosis factor-a; TrkB: tropomyosin-receptor kinase; TS: Tourette syndrome
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kinase II (CaMKII) signaling pathway, JAK-STAT path-
way, and NF-kB pathway are crucial pathways involved
in the processes of neuroinflammation resulting from the
activation of microglia [115].

CaMKll signaling pathway

The activation of calcium-calmodulin-dependent pro-
tein kinase II (CaMKII) has been linked to movement
disorders, such as TS [99, 104, 107, 130]. CaMKII acti-
vation can be induced by anti-neuronal antibodies or
NMDAR. CaMKII activation has been reported to be
induced by the reactivity of antibodies against the neu-
ronal cell surface and caudate-putamen. The activation
of NMDAR allows Ca** and Na* influx into cells, lead-
ing to the activation of CaMKII [131]. The activation of
CaMKII can mediate inflammatory responses through
the ERK/p65/STAT3 or Drpl/ROS/NF-kB pathways, and
can also affect dopamine release through the regulation
of tyrosine hydroxylase. The CaMKII/ERK/p65/STAT3
signaling pathway is closely associated with inflamma-
tion and induces neurotoxicity in dopaminergic neuronal
cells [132]. The CaMKII/Drpl/ROS/NF-«B pathway also
activates microglia towards pro-inflammatory M1 polar-
ization after stimulation with LPS [116]. CaMKII activa-
tion leads to increased tyrosine hydroxylase levels and
subsequent dopamine release. CaMKII also regulates the
excitability of NMDAR via Glu transmission [133]. Even-
tually, antibody-mediated CaMKII activation may result
in movement disorders, such as TS [109, 134].

JAK2/STAT3 pathway

JAK2/STAT3 is considered one of the most important
inflammatory pathways that induces the expression of
inflammation-related genes. The JAK2/STAT3 pathway is
activated by inflammatory factors produced in response
to pathogen stimulation. Activation of the JAK2/STAT3
pathway may, in turn, regulate the release of inflamma-
tory factors and interact with downstream transcription
factors, such as NF-kB p65, to modulate the inflamma-
tory response. IL-1B, TNF-a, and IL-6 produced in an
inflammatory surrounding may activate JAK/STAT
signaling, which in turn, can regulate the release of a
number of inflammatory cytokines, which may cause
neurological damage [118, 135, 136]. Among the JAK2/
STAT3 pathway members, STAT3 (signal transducer
and activator of transcription 3), a key transcription fac-
tor regulating inflammation, can lead to elevated lev-
els of inflammatory cytokines in the brain [119, 137].
LPS can lead to STAT3 phosphorylation [118, 138, 139],
after which, STAT3 translocates to the nucleus and acts
as a transcription factor, inducing the expression of
inflammatory genes. The phosphorylation of STAT may
cause the phosphorylation of Janus kinase, and regulate
the inflammatory response by interacting with other
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transcription factors, such as NF-«B p65. LPS induces
microglial activation through the JAK2/STAT3 pathway,
which regulates the release of inflammatory cytokines
[140]. Subsequently, the release of neurotransmitters was
regulated, which may lead to the onset of TS [117, 141,
142].

NF-kB pathway

Microglia can be activated by LPS through the NF-«xB
signaling pathway, leading to neuroinflammation [120].
Many pathways, such as the PI3K/Akt, TLR/NLRP3,
TLR/MyD88, BDNEF/TrkB/MyD88, EGF/EGFR, and
Nrf-2/HO-1 pathways, have been shown to regulate
NF-«B. PI3K/Akt regulates the NF-kB pathway through
the phosphorylation of Akt [121, 122]. Activation of
the TLR/NLRP3/NF-kB pathway has been reported to
induce inflammation in rat models [123, 143, 144]. The
TLR/MyD88/NF-«B pathway has also been shown to be
involved in the pathogenesis of TS [123]. Brain-derived
neurotrophic factor (BDNF) combined (Trk) receptor,
BDNEF-tropomyosin-receptor kinase B (TrkB) signaling
pathway plays a crucial role in the development of TS
by activating the MyD88/NF-kB pathway to regulate the
inflammatory response [124, 125, 145]. Inhibition of the
Nrf-2/HO-1 pathway can also lead to activation of the
NF-kB pathway [126]. Inhibition of the EGF/EGEFR path-
way may activate the NF-kB pathway by inhibiting the
Nrf-2/HO-1 pathway, which is involved in inflammation
and oxidative stress regulation [127].

Other pathways related to TS

The NMDAR/MAPK/CREB pathway plays an important
role in the development of TS. Mitogen-activated protein
kinase (MAPK) is reported to play important roles in the
release of inflammatory cytokines. MAPKs, including
c-Jun terminal kinase (JNK), extracellular signal-regu-
lated protein kinase (ERK) and p38, regulate the expres-
sion of inflammatory genes [121, 146]. Glu, the release of
which is mediated by NMDA receptors, is associated with
tic syndromes [147]. Hence, the NMDA-MAPK pathway
may lead to TS through the release of inflammatory cyto-
kines and Glu [128]. The PI3K/AKT/mTOR pathway may
also be involved in TS pathogenesis [129]. Dopamine
release and neuronal growth are regulated by mTOR sig-
naling. The absence of mTOR in the ventral tegmental
area alters the balance of neurotransmitters and reduces
dopamine levels [148]. In one study, increased levels of
FLT3 were observed in patients with TS [149]. Single
nucleotide polymorphisms (SNPs) located in the recep-
tor tyrosine kinase gene FLT3 have been found to activate
the PI3K/AKT/mTOR pathway [150].
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Fig. 2 Summary of the possible mechanism leading to Tourette syndrome (TS) associated with the immune response/inflammation. Bacterial infection
leads to over-activation of the peripheral immune response, producing a large number of inflammatory cytokines, which diffuse into the brain across
the BBB and lead to neuroinflammation. Virus or allergens cloud also mediate the release of inflammatory cytokines. Excessive inflammatory cytokines
can also lead to microglia M1 hyperpolarization via the JAK2/STAT3 and NF-kB pathways, which may impair striatal dopaminergic neurons, causing
over-release of dopamine (DA), resulting in tics. Anti-neuronal antibodies also play an important role in the pathogenesis of TS mediated by infection.
Anti-neuronal antibodies produced after bacterial infection, particularly streptococcus infection, interact with neuronal surface antigens, which activate
microglia via the CAMK Il pathway, leading to impaired dopaminergic neurons, ultimately, leading to tic syndrome

Conclusions

TS is a neuropsychiatric disorder associated with
inflammation-mediated immune response. This article
describes the pathogenesis of TS associated with immune
responses caused by infection or allergy. Previously, it
was found that abnormalities in the CSTC circuit lead
to the onset of tics, which are mainly associated with an
imbalance in neurotransmitters. Genetic and environ-
mental factors are also involved in the pathogenesis of
TS. Inflammation-mediated immune responses can also
cause tics, as has been confirmed in numerous clinical
and animal studies. Triggers that contribute to the devel-
opment of tics via inflammatory responses include viral
and bacterial infections and allergic reactions. Based on
the findings of previous studies, we created a diagram to
summarize the underlying mechanism of TS associated
with inflammation (Fig. 2). The neurotransmitter imbal-
ance in TS, mediated by neuroinflammation, is a research
hotspot involving dopamine and Glu. Tic disorders
induced by infection or allergic reactions are commonly
observed in clinical practice. Large-sample randomized
controlled trials or cohort studies should be conducted
to further demonstrate the impact of inflammation-
related factors on the onset of tics, which will provide the

foundation for exploring novel therapeutic approaches to
TS.
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