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Abstract
Background Previous studies have suggested that factors such as the treatment interval and aetiology may 
influence the initial response rate to first-line treatment for infantile epileptic spasms syndrome (IESS). However, few 
children with IECSS have undergone clinically accessible tests to determine the aetiology.

Methods Using a dataset from our previously published research, we constructed and tested a predictive model for 
the initial response to first-line treatment in children with IESS. Random sampling and 5-fold cross-validation were 
performed, with synthetic minority oversampling technique to correct data imbalance. Machine learning algorithms 
and evaluation metrics optimised model accuracy and efficacy.

Results This study included 532 children with IESS who had completed monotherapy first-line treatment, of whom 
160 achieved an initial response. The model’s accuracy, F1 score, and area under the curve (AUC) in the validation 
set were 0.7836 ± 0.0229 (ranging from 0.75167 to 0.80536), 0.7833 ± 0.0229 (ranging from 0.75145 to 0.80531), and 
0.8516 ± 0.0165 (ranging from 0.82468 to 0.86936), respectively. Factors such as the age of seizure onset, age of 
spasm onset, lead time, MRI subtype, treatment choice, and age at treatment consistently ranked in the top six for 
importance in contributing to the model.

Conclusions The study findings suggest that this model may help effectively predict the initial response to first-line 
treatment, supporting clinical decision-making for children with IESS. Key predictors such as the age of seizure onset 
and MRI subtype enable early, data-driven intervention strategies in clinical practice.
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Introduction
Infantile epileptic spasms syndrome (IESS), formerly 
known as infantile spasms or West syndrome, is an age-
dependent epileptic encephalopathy characterised by the 
occurrence of epileptic spasms. The onset of IESS typi-
cally manifests within the first year postnatally, although 
the presentation may sometimes be delayed up to 24 
months. Recent studies have highlighted that IESS is 
among the most prevalent epileptic encephalopathies of 
early childhood. For example, according to the findings 
of Coryell et al., over one-third of patients with epilepsy 
aged under three years are diagnosed with IESS [1]. Fur-
thermore, Jonsson et al. reported that 50% of infants who 
developed epilepsy within the first year of life later devel-
oped IESS [2]. Most children affected by IESS experience 
residual cognitive deficits, underscoring the potential 
benefits of prompt intervention and spasm control for 
improved neurodevelopmental outcomes.

The initial efficacy of treatments for IESS varies widely, 
ranging from 30 to 80%. However, more extensive recent 
studies report a modest initial efficacy of approximately 
40% for IESS, with long-term outcomes closely linked 
to the early control of spasmodic seizures [3]. Several 
studies have employed analytical techniques on raw 
electroencephalogram (EEG) data to identify predictors 
of treatment efficacy for IESS. For example, our earlier 
research indicated that the complexity of the γ-band in 
occipital lobe EEG recordings exhibited optimal discrim-
inative performance for treatment response, correspond-
ing to an area under the receiver operating characteristic 
curve (AUC) of 0.8621. In contrast, the complexity of the 
δ-band could serve as a reasonable predictor for overall 
adverse outcomes [4]. Studies by Rajsekar R. Rajaraman 
and colleagues have identified entropy and long-range 
temporal correlations as potential initial efficacy and 
relapse predictors [5]. Research by Junhyung Kim et al. 
on 40 children with IESS suggested that the strength of 
functional connectivity across different regions and fre-
quency bands via EEG could effectively predict the initial 
response to vigabatrin (VGB) treatment [6]. Sotaro Kanai 
and others proposed that pretreatment EEG features, 
such as the relative power spectrum (rPS), weighted 
phase lag index (wPLI), and graph theoretical analysis, 
may serve as early effective predictors of the response to 
adrenocorticotropic hormone (ACTH) therapy [7]. Fur-
thermore, Ryuki Matsuura et al. reported that the serum 
levels of matrix metallopeptidase-9 (MMP-9) and tissue 
inhibitor of metalloproteinase-1 (TIMP-1) can predict 
the response to ACTH therapy in patients with infantile 
spasms [8]. Unfortunately, although these factors may 
hold predictive value for the efficacy of IESS treatment, 
such methods and observational markers are not readily 
accessible in clinical settings and often require engineer-
ing expertise for in-depth data processing. Additionally, 

only the model constructed by Yuto Arai et al. using clin-
ical data has demonstrated high sensitivity and specificity 
for predicting poor seizure outcomes (86.7% and 64.3%, 
respectively) and poor developmental outcomes (88.9% 
and 100%, respectively); however, this model is based on 
a relatively small cohort of just over 40 patients with IESS 
[9].

The therapeutic principle for IESS is the early and rapid 
control of spasmodic seizures. Current first-line treat-
ments for IESS include two major categories: hormonal 
agents and VGB [3, 10, 11]. A randomised controlled trial 
(RCT) conducted in 2017 confirmed that the early com-
bination of VGB and hormonal therapy, compared with 
monotherapy, may significantly improve the initial con-
trol rate of IESS [12]. Recent research by Yuskaitis et al. 
also recommends evaluating the efficacy of a single drug 
as early as possible and then deciding whether to imme-
diately add a second treatment modality [13]. However, 
considering the side effects of VGB [14–17], such as 
visual field defects, cranial MRI-related imaging abnor-
malities, and economic considerations, the effectiveness 
of combination therapy, although demonstrated, is still 
somewhat limited. This was particularly highlighted by 
Bhalla et al. in 2020, who reported three cases of severe 
encephalopathy in children treated with VGB, one of 
which resulted in death, potentially related to the com-
bined use of hormones and VGB [18]. Therefore, early 
prediction of whether children with IESS will respond to 
monotherapy supports more informed treatment deci-
sions, such as opting for combination therapy, which may 
significantly benefit the treatment of IESS. Physicians 
may also be able to devise more appropriate treatment 
plans for children with IESS at their initial consultation, 
aiming for the early control of spasms, especially con-
sidering the imbalance in medical resources between 
regions. For example, higher-income countries may have 
more paediatric neurologists, whereas lower-income 
countries may have very few [19]. Establishing such 
a model could help narrow the global gap in medical 
resources available to children with IESS.

Prior investigations have established that the latency 
from the onset of IESS to the initiation of therapeu-
tic intervention is a significant determinant of both the 
immediate efficacy of treatment and the long-term neu-
rodevelopmental prognosis. Our previous research 
revealed that a reduced lead time is associated with an 
increased probability of securing an initial response. 
However, when seizure onset precedes the age of three 
months, a period during which an initial response is 
achieved becomes notably more arduous [20]. In a study 
by Daida and colleagues, which assessed a cohort of 
107 children with IESS of structural-acquired origin, it 
was posited that these patients exhibited a heightened 
propensity for an initial response to treatment [21]. 
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Concurrently, Chourasia et al.‘s investigation of IESS 
cases stemming from non-acquired aetiologies indicated 
that patients with recognisable dysmorphic/syndromic 
diagnoses were more likely to achieve a positive initial 
response [22]. Despite these insights, the aforementioned 
studies primarily delineate associative links between clin-
ical variables and short-term treatment responses with-
out providing a robust framework for individual patient 
management. The challenge persists in synthesising these 
variables into a cohesive model for clinical application. 
Developing a model that meticulously integrates these 
factors would be of immense value to paediatric neu-
rologists in optimising the management of children diag-
nosed with IESS, ultimately enhancing patient care.

Our current research focused on constructing an initial 
efficacy prediction model for IESS based on data read-
ily available in a clinical setting, such as aetiology, age at 
onset, and treatment interval. This study references the 
most extensive IESS retrospective cohort study published 
to date, which gathered data from exhaustive clinical 
examinations (since factors such as aetiology and treat-
ment interval are closely associated with initial efficacy) 
[11]. Our predictive model was developed and validated 
based on this robust dataset.

Methods
Ethical approval
Informed consent for participation in this study was 
obtained from the patients’ parents, and the participants 
did not receive the stipend. All data are de-identified 
and protected by privacy safeguards. Ethical approval 
for the study was granted by the Ethics Committee of 
the First Medical Centre of the PLA General Hospital 
(S2022-208-01).

Data source
The data for this study were sourced from our previ-
ously published research, which included a cohort of 
532 children diagnosed with IESS who had completed 
monotherapy with first-line agents, including hormonal 
drugs (ACTH or prednisolone) or VGB. All 532 chil-
dren underwent comprehensive clinical examinations to 
determine the aetiology of their condition. In this cohort, 
over 75% of the children had a clearly identified aetiol-
ogy [20], comparable to the findings of another study in 
which 82% of the IESS cohort had completed exhaustive 
clinical examinations [22]. In our previously published 
cohort of 532 children who completed first-line therapy, 
the efficacy rate was 32%, similar to the initial efficacy 
rate of 33% reported by Deckard et al. in their recent 
study of over 300 cases of IESS [23]. Considering these 
two aspects, this dataset is currently the largest and most 
representative clinical dataset of children with IESS.

Data availability
The datasets generated and/or analysed during the cur-
rent study are available from the corresponding author 
upon reasonable request.

Participants
We collected clinical data from children diagnosed with 
IESS who visited our hospital (Beijing, China) from Janu-
ary 2018 to June 2023. The inclusion criteria for patients 
were as follows: met the diagnostic criteria for IESS as 
per the guidelines published by the International League 
Against Epilepsy (ILAE) in 2022 [24] and had completed 
first-line therapy [20]. Standardised treatment included 
the use of an adequate dose of ACTH for more than 2 
weeks, VGB at a minimum dose equivalent to the recom-
mended dose, or oral steroids at the prescribed dose for 1 
month. Patients had undergone clinically available exam-
inations to determine the aetiology. Briefly, the sequence 
of examinations was as follows: cranial MRI, genetic 
testing, and metabolic testing. All patients classified as 
having unclear aetiology must have completed all three 
examinations to be included in this study. Any data with 
missing information was excluded from the research.

The data collected for this study were rigorously evalu-
ated. For all clinical data, confirmation was obtained 
from at least two paediatric neurologists, and in cases of 
disagreement, a more senior paediatric neurology spe-
cialist was consulted for final confirmation. The results 
of genetic testing were based on the American College 
of Medical Genetics and Genomics (ACMG) rating stan-
dards, and only mutations judged to be pathogenic or 
likely pathogenic in relation to IESS were considered to 
have genetic abnormalities. The radiological examina-
tion results were confirmed by radiologists. Notably, all 
radiological examinations deemed negative required 
reconfirmation by a paediatric neurologist before being 
considered normal. For any discrepancies, a conclusion 
was reached after further discussion between the paedi-
atric neurologist and the radiologist.

Outcome
The outcome of interest in this study was the initial 
response of children with IESS to first-line treatment. 
The criteria for determining the initial response, con-
sistent with those used by Chourasia et al. and in our 
previous research [20, 22], are as follows: the control of 
spasmodic seizures during the course of first-line treat-
ment and the continuation of this control for at least four 
weeks after the end of treatment. The absence of such 
control is defined as a nonresponse.

Predictors
In our previous study [20], we identified a range of pre-
dictors, including sex; the type of first epileptic seizure; 
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the timing of the first epileptic seizure; the occurrence 
of epileptic seizures in early life (early-onset seizures, 
defined as those occurring when ≤ 3 months of age); the 
age at onset of spasmodic seizures; the presence of late-
onset spasms (defined as those with an age > 12 months 
at the time of spasms); the presence of other seizure types 
concurrent with spasms; the presence of hypsarrhythmia; 
developmental delay prior to spasms; the type of first-
line treatment used (including ACTH, corticosteroids, 
and VGB); the age at initiation of first-line treatment; 
abnormalities on cranial MRI; their specific classification 
(including normal; acquired structural abnormalities fur-
ther divided into perinatal brain injury and developmen-
tal brain injury; and congenital structural abnormalities 
such as reduced brain volume, dysplastic brain disorders, 
developmental tumours, and malformations of cortical 
development [MCD]); and the aetiological classification 
of IESS (including acquired structural abnormalities, 
genetic abnormalities with normal structure, congeni-
tal structural abnormalities with genetic abnormali-
ties, congenital structural abnormalities without genetic 
abnormalities, and unknown causes). The methods for 
determining these predictors and the detailed process 
can be found in our previous study [20]. The selection of 
predictors for our current study included all the features 
collected above, which encompass clinical characteristics 
related to the initial response to first-line treatment for 
IESS, as reported in previous research.

Sample size
We used 16 independent variables as predictive fac-
tors. Previous studies have reported that the initial effi-
cacy rate of first-line treatment in children with IESS 
is approximately 40%. Thus, we set the response rate at 
40%, anticipating that the model’s predictive ability could 
achieve an AUC of 0.8. Referring to the study by Richard 
et al. [25], we calculated the sample sizes as 487, 367, and 
369, respectively, with the final sample size determined to 
be 487 individuals. Our study included a cohort of 532 
children with IESS, which fully met the requirements. 
Considering the potential need to address data imbal-
ance further, we revised the response rate to 50%, and the 
calculated sample sizes were 468, 360, and 385, with the 
final sample size determined to be 468 individuals. The 
number of participants in the cohort included in this 
study still met the requirements.

Model construction and validation
During the construction and validation of the model, we 
first addressed data balance using the synthetic minor-
ity oversampling technique (SMOTE), which can bal-
ance the data between responsive and nonresponsive 
IESS patients. This prevents the model from excessively 
favouring the majority class during training and enhances 

its ability to identify the minority class. Next, we imputed 
the missing data from all medical records and re-stan-
dardised the dataset. The dataset was randomly divided 
into an 80% model construction set and a 20% validation 
set, with fivefold cross-validation conducted. In addition, 
we compared a variety of machine learning algorithms, 
including random forest. We also employed SHapley 
Additive exPlanations (SHAP), a methodology used to 
elucidate the contribution of each feature to the predic-
tive outcomes of the model. to calculate the importance 
and influence direction of each predictor in the model. 
The detailed operational procedures can be found in the 
supplementary materials (Supplementary Text and Fig-
ure S1A).

Results
Participants
A total of 532 patients with IESS were included in this 
study, 226 (42.5%) of whom were female. One hundred 
and thirteen patients experienced a nonspasmodic type 
of seizure as their first epileptic event, with a median 
age at first seizure of 5.0 months (25th percentile at 3.0 
months, 75th percentile at 7.1 months). Early-onset sei-
zures were observed in 106 patients, with a median age 
at onset of spasmodic seizures of 5.5 months (25th per-
centile at 4.0 months, 75th percentile at 8.0 months). 
Fifty-seven (10.7%) patients were classified as having 
late-onset spasms, and 108 (20.3%) patients had other 
types of seizures concurrent with spasms. A total of 
342 (64.3%) patients exhibited hypsarrhythmia during 
spasms and 237 (44.5%) patients experienced develop-
mental delays prior to the onset of spasms. With respect 
to first-line treatment, 420 (78.9%) patients received 
ACTH, 51 (9.6%) received oral corticosteroids, and 61 
(11.5%) received VGB. The median age at the initiation 
of first-line treatment was 7.5 months (25th percentile 
at 5.5 months, 75th percentile at 11.0 months). Abnor-
mal cranial MRI findings were present in 354 (66.5%) 
patients, with 115 (21.6%) classified as having acquired 
structural abnormalities (including 84 (15.8%) with peri-
natal brain injury and 31 (5.8%) with brain injury during 
development) and 239 (44.9%) with congenital structural 
abnormalities (comprising 32 (6.0%) with reduced brain 
volume, 92 (17.3%) with dysplastic brain disorders, 22 
(4.1%) with developmental tumours, and 92 (17.3%) with 
MCD). Aetiologically, 115 patients were categorised as 
having acquired structural abnormalities, 51 (9.6%) had 
genetic abnormalities with normal structure, 101 (19.0%) 
had congenital structural abnormalities with genetic 
abnormalities, 138 (25.9%) had congenital structural 
abnormalities without genetic abnormalities, and 127 
(23.9%) had an unknown cause (see Table 1).

A total of 160 patients achieved an initial response to 
first-line treatment. Significant differences were observed 
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Characteristic Overall, N = 5321 Nonresponse, N = 3721 Response, N = 1601 p-value
Age_of_seizure_oneset 0.0182

Median (IQR) 5.0 (3.0, 7.1) 5.0 (3.0, 7.0) 5.5 (4.0, 7.5)
Age_of_spasm_oneset 0.2032

Median (IQR) 5.5 (4.0, 8.0) 5.0 (3.5, 8.0) 6.0 (4.5, 7.5)
Treatment_age 0.6102
Median (IQR) 7.5 (5.5, 11.0) 7.5 (5.5, 12.0) 7.5 (6.0, 10.0)
Lead_time 0.5092
Median (IQR) 1.50 (0.50, 3.00) 1.50 (0.50, 3.50) 1.50 (1.00, 3.00)
Gender 0.3363

Male 306 (57.5%) 219 (58.9%) 87 (54.4%)
Female 226 (42.5%) 153 (41.1%) 73 (45.6%)
First_seizure_type 0.1063

Non spasm 113 (21.2%) 86 (23.1%) 27 (16.9%)
Spasm 419 (78.8%) 286 (76.9%) 133 (83.1%)
Onset_early 0.0013

≤ 3 months 106 (19.9%) 88 (23.7%) 18 (11.3%)
˃ 3months 426 (80.1%) 284 (76.3%) 142 (88.8%)
Spasm_late_onset 0.2053

≤ 12 months 475 (89.3%) 328 (88.2%) 147 (91.9%)
>12 months and ≤ 24months 57 (10.7%) 44 (11.8%) 13 (8.1%)
Other_type_during_spasm 0.4133

With other seizure type 108 (20.3%) 79 (21.2%) 29 (18.1%)
Without other seizure type 424 (79.7%) 293 (78.8%) 131 (81.9%)
Hypsarrhythmia 0.5733

No 190 (35.7%) 130 (34.9%) 60 (37.5%)
Yes 342 (64.3%) 242 (65.1%) 100 (62.5%)
Development_delay_prior_to_spasms_onset 0.5593

Yes 237 (45.0%) 169 (45.8%) 68 (43.0%)
No 290 (55.0%) 200 (54.2%) 90 (57.0%)
Treatment < 0.0013

ACTH 420 (78.9%) 282 (75.8%) 138 (86.3%)
Oral costeroids 51 (9.6%) 48 (12.9%) 3 (1.9%)
VGB 61 (11.5%) 42 (11.3%) 19 (11.9%)
MRI 0.1313

Abnormal 354 (66.5%) 240 (64.5%) 114 (71.3%)
Normal 178 (33.5%) 132 (35.5%) 46 (28.8%)
MRI_type 0.5673

Acquired 115 (21.6%) 74 (19.9%) 41 (25.6%)
Congenital 239(44.9%) 194 (44.6%) 81 (45.6%)
Normal 178 (33.5%) 103 (35.5%) 46 (28.8%)
MRI_subtype 0.1473

Perinatal acquired brain injury 84 (15.8%) 51 (13.7%) 33 (20.6%)
Postnatal acquired brain injury 31 (5.8%) 23 (6.2%) 8 (5.0%)
Developmental tumor 22 (4.1%) 12 (3.2%) 10 (6.3%)
Normal 178 (33.5%) 132 (35.5%) 46 (28.8%)
MCD 93 (17.5%) 62 (16.7%) 31 (19.4%)
Volume Loss 32 (6.0%) 25 (6.7%) 7 (4.4%)
DBD 92 (17.3%) 67 (18.0%) 25 (15.6%)
IESS Classification 0.0783

Acquired structural abnormalities 115 (21.6%) 74 (19.9%) 41 (25.6%)
Congenital structural abnormalities with positive genetic finding 101 (19.0%) 77 (20.7%) 24 (15.0%)
Normal structure with positive genetic finding 51 (9.6%) 41 (11.0%) 10 (6.3%)

Table 1 532 IESS patients’demographics and inter-group analysis of response and nonresponse



Page 6 of 12Ge et al. Italian Journal of Pediatrics          (2025) 51:118 

between the response and nonresponse groups in terms 
of age at first seizure, presence of early-onset seizures, 
and choice of first-line treatment. In contrast, other pre-
dictive factors did not significantly differ (see Table 1).

After balancing with SMOTE, both the response and 
nonresponse groups comprised 372 patients each, total-
ling 744 patients. The original dataset formed three 
clusters of varying densities in the t-SNE cluster plot, 
each containing points labelled 0 (nonresponse) and 1 
(response). The two categories were mixed within the 
clusters, suggesting a lack of strong separation between 
them. The number of labels in each cluster was rela-
tively balanced. After further balancing with the SMOTE 
algorithm, the new synthetic data still presented three 
clusters, similar to the original t-SNE clustering results, 
indicating that the synthetic data did not disrupt the 
original data distribution (see Fig. 1).

Model specification and performance
During the fivefold cross-validation process, each model-
building and validation iteration included 297 and 298 
individuals in the nonresponse group and 75 and 74 
individuals in the response group, respectively. Across 
the five validation sets, the accuracy, F1 score, and AUC 
were 0.783 ± 0.0229 (ranging from 0.75167 to 0.80536), 
0.7833 ± 0.0229 (ranging from 0.75145 to 0.80531), and 
0.8516 ± 0.0165 (ranging from 0.82468 to 0.86936), 
respectively (see Table 2). Compared with other models 
(whose performance on the validation set can be found 
in Supplementary Table 1), our XGBoost model demon-
strated the highest accuracy and F1 score (see Table  3). 
The AUC value during the five validation processes was 
0.8516 ± 0.0165 (ranging from 0.82468 to 0.86936), which, 
compared with other models (the results of the fivefold 
cross-validation for other models can be seen in Supple-
mentary Figure S2), indicated that the performance of 
our XGBoost model was similar to that of the best-per-
forming models, with a mean AUC above 0.85 (mean 
AUC = 0.8544, 95% CI: 0.8516 to 0.8555) (see Fig. 2).

Interpretability
Throughout the fivefold cross-validation of our XGBoost 
model, the predictive factors with a mean SHAP value 
greater than 0.2 consistently appeared in the top six rank-
ings. These factors were the age of seizure onset, age of 
spasm onset, lead time, MRI subtype, treatment, and 

treatment age. These six factors significantly contributed 
to the model (see Fig. 3 and Supplementary Table 2).

Discussion
The treatment of IESS remains challenging, and the initial 
response to therapy is a concern for many clinicians and 
researchers [11, 26, 27]. Our study suggests that predic-
tions regarding the response to first-line treatment may 
be possible using clinically available data. Unlike previous 
studies, all the predictive factors used in our study are 
readily obtainable in a clinical setting and do not require 
further processing. This makes our model accessible and 
convenient for clinical application. The top six predictive 
factors in our predictive model contributed significantly 
to the overall model.

Previous extensive research has emphasised the impor-
tance of lead time for the initial response in children 
with IESS, with those receiving earlier first-line treat-
ment being more likely to achieve an initial response and 
better developmental outcomes [12, 28–30]. Our prior 
research based on the data from this study has already 
shown a significant relationship between lead time and 
initial response, where a shorter lead time is more likely 
to result in an initial response [20]. This finding is consis-
tent with the results of our current study, where the lead 
time significantly contributed to our model for predicting 
the initial response.

In childhood epilepsy, an earlier age of onset may indi-
cate a greater likelihood of epileptic syndromes, develop-
mental epileptic encephalopathies, and poor prognosis. 
For example, early infantile developmental encephalopa-
thy (EIDEE), previously known as Ohtahara syndrome, 
begins early in life and may transition to IESS and later 
evolve into Lennox-Gastaut syndrome (LGS). Seizures 
in children with this type of epileptic syndrome are often 
challenging to control [24]. In our study, the group analy-
sis results revealed that children with an earlier onset of 
seizures were less likely to achieve an initial response. 
Therefore, the age of seizure onset may have predictive 
value for the initial response. Previous studies have also 
indicated that the age of onset of spasms is associated 
with a lower likelihood of achieving an initial response 
[31, 32]. Unlike the age of first seizure, later onset of 
spasms, such as those occurring after 12 months of age, 
typically indicates a lower probability of achieving an ini-
tial response. The age at treatment is related to the age of 

Characteristic Overall, N = 5321 Nonresponse, N = 3721 Response, N = 1601 p-value
Congenital structural abnormalities without positive genetic finding 138 (25.9%) 89 (23.9%) 49 (30.6%)
Unknown 127 (23.9%) 91 (24.5%) 36 (22.5%)
1n (%)
2Wilcoxon rank sum test
3Pearson’s Chi-squared test

Table 1 (continued) 
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Fig. 1 T-SNE clustering visualization of original and SMOTE-enhanced data. A. T-SNE clustering visualisation of the original data. B. T-SNE clustering visu-
alisation of the data after the SMOTE algorithm. Each point represents a patient, with blue indicating nonresponders and green indicating responders. The 
similar distribution intervals of responders and nonresponders confirm that there is no significant change in the data distribution after SMOTE compared 
with the original data distribution
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spasm onset and the lead time to treatment, so, under-
standably, this factor would make a high contribution to 
the model.

Research has indicated that the aetiology of IESS may 
be related to prognosis, with patients of unknown cause 
(without cranial MRI abnormalities) being more likely to 
achieve an initial response [11, 21]. Daida et al. suggested 
that patients with structurally acquired aetiology respond 
better to ACTH treatment than those with combined 
congenital aetiologies [21]. Moreover, it has long been 
established that patients with MCD have epilepsy that 
is more difficult to control [33, 34]. In our study, 87% of 
patients with a definite aetiology had cranial MRI abnor-
malities, indicating that MRI findings are related to aeti-
ological classification and initial response and that they 
contributed significantly to our model.

The treatment choice was the last factor that signifi-
cantly contributed to our model. Currently, first-line 
treatments for IESS include two major categories: corti-
costeroid drugs and VGB [24]. Past studies have shown 
that for patients with tuberous sclerosis complex (TSC) 
associated with IESS, VGB may be more effective than it 
is for IESS caused by other aetiologies. For other causes, 
corticosteroid drugs should be the first-line treatment of 
choice [3, 10, 24]. In our study, some patients had TSC 

associated with IESS, which explains why the treatment 
choice had a significant impact.

The treatment of infantile epileptic spasms syndrome 
(IESS) remains a challenge, and based on current thera-
peutic principles, early administration of effective stan-
dard treatments is of paramount importance. Although 
it is widely believed that initiating combination therapy 
from the outset may increase the short-term response 
rate in IESS [12], Yuskaitis and colleagues hold a differ-
ing view. Their findings suggest that early assessment 
of the monotherapy response followed by a decision on 
combination therapy might be more ideal [13]. Given the 
global disparity in medical resources, many regions still 
have limited experience diagnosing and treating IESS [19, 
35, 36]. The model generated by our study can predict 
the likelihood of an individual IESS patient’s response to 
monotherapy, thereby facilitating the selection of medi-
cations that are more likely to yield a short-term response 
and determining whether to employ combination therapy 
early on.

Notably, for patients with refractory spasms, surgery is 
an option that should be considered and has been proven 
effective in nearly 70% of patients with epileptic spasms 
[37]. Patients predicted by the model to be unlikely to 
respond to various first-line treatments might also ben-
efit from this model by advancing to the presurgical 
evaluation stage sooner, thereby reducing unnecessary 
medical procedures and financial burdens. The long-term 
neurodevelopmental outcomes for children with IESS 
are linked to the control of epileptic spasms, and early 
control of these spasms may contribute to better long-
term outcomes [3]. Our newly developed model could 
assist in selecting treatment strategies for children with 
IESS, aiming for early control of spasms and potentially 
improving long-term neurodevelopmental outcomes.

Limitations of the study
First, this is a secondary analysis based on our previously 
published research; therefore, as with prior studies, our 
limitations include the following points: (1) Inherent 

Table 2 Performance of the XGBoost predictive model in the validation set during 5-fold cross-validation. AUC, area under the curve; 
CI, confidence interval
fold accuracy f1-score AUC AUC 95%CI lower AUC 95%CI upper confusion_matrix
1 0.77181 0.77160 0.85441 0.85159 0.85552 [[60 15]

[19 55]]
2 0.80536 0.80531 0.86936 0.86653 0.87031 [[59 16]

[13 61]]
3 0.80536 0.80473 0.85810 0.85758 0.86153 [[64 10]

[19 56]]
4 0.75167 0.75145 0.82468 0.82268 0.82681 [[58 16]

[21 54]]
5 0.78378 0.78342 0.85153 0.84996 0.85385 [[61 13]

[19 55]]
Average 0.7836 ±  0.0229 0.7833 ±  0.0229

Table 3 Performance comparison of the XGBoost predictive 
model with other models

Accuracy F1-score
Random Forest 0.7715 ±  0.0287 0.7714 ±  0.0288
Gradient Boosting 0.7594 ±  0.0215 0.7592 ±  0.0218
Logistic Regression 0.6317 ±  0.0225 0.6266 ±  0.0209
SVM 0.7056 ±  0.0344 0.7023 ±  0.0374
KNN 0.6788 ±  0.0346 0.6706 ±  0.0372
Decision Tree 0.6814 ±  0.0376 0.6812 ±  0.0375
Naive Bayes 0.6371 ±  0.0271 0.6339 ±  0.0288
MLP 0.7030 ±  0.0259 0.7024 ±  0.0265
LightGBM 0.7648 ±  0.0237 0.7645 ±  0.0239
OUR Xgboost 0.7836 ±  0.0229 0.7833 ±  0.0229
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Fig. 2 (See legend on next page.)
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biases are associated with the retrospective nature of 
the analysis; selection bias is an inevitable issue, and 
confounding bias may also arise from factors that were 
not measured. Additionally, the potential for informa-
tion bias exists owing to the variability in how different 
physicians document within medical record systems; (2) 
Some patients sought secondary treatment at our centre 
after failing treatment at other hospitals (these patients 
had a significantly reduced initial response rate because 
they only sought secondary treatment at our centre after 
treatment failure or relapse elsewhere); (3) The number 
of patients treated with VGB was small, and the data 

between patients treated with hormonal medications 
may not be sufficiently balanced, which could lead to 
measurement or model evaluation bias during the analy-
sis process. This may challenge the generalisability of the 
model in our study results. However, as previously men-
tioned, VGB is not the first choice for non-TSC-related 
IESS patients, so this issue seems unavoidable in real-
world research. In summary, given these limitations, cau-
tion is warranted when interpreting the results of our 
predictive model. Further validation with other studies 
may help test the capabilities of our predictive model.

(See figure on previous page.)
Fig. 2 Performance of the XGBoost predictive model in the validation set. (A) AUC across 5-fold cross-validation, each color represents each fold; (B) AUC 
(mean value of 5-flod) comparison with other models, each color represents a different model, and all AUC values are the v of the 5 - fold of a single model. 
The multiple coloured curves represent the results of fivefold cross-validation, illustrating the relationship between the true positive rate (TPR) and the 
false-positive rate (FPR) at different thresholds. The closer the curve is to the top left corner, the better the model’s performance; AUC, the area under the 
curve, is a critical metric for measuring model performance. Values closer to 1 indicate better classification performance; CI, confidence interval, provides 
a potential range for the AUC value. At a certain confidence level, there is a high probability that the actual AUC value will fall within this interval, helping 
to assess the uncertainty in the model’s performance

Fig. 3 Interpretability of predictors in the XGBoost predictive model during 5-fold cross-validation. The vertical axis lists a series of features arranged by 
the average magnitude of their SHAP values. The horizontal axis represents the SHAP value for each feature, indicating the impact of each feature on the 
model’s prediction. Larger absolute SHAP values indicate a more significant effect. Points represent the SHAP values for individual samples across features. 
Point position corresponds to the SHAP value on the horizontal axis and the feature on the vertical axis. The colour of the points indicates the impact 
level: red signifies a high impact (High), meaning that the feature significantly increases the model’s output or response rate; blue represents a low impact 
(Low), meaning that the feature significantly decreases the model’s output or response rate. This visualisation helps identify which features most influence 
the model’s predictions and how different feature values (high or low) affect individual predictions. It provides an intuitive understanding of the model’s 
behaviour, facilitating stakeholder communication
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Conclusions
We developed a predictive model based on clinically 
available data that has demonstrated a reasonable level of 
predictive ability. All predictive factors in this model can 
be obtained in clinical practice without secondary pro-
cessing. This allows paediatric neurologists to predict the 
effectiveness of first-line treatment responses in children 
with infantile epileptic spasms syndrome (IESS) using our 
model and to plan or adjust treatment plans accordingly, 
such as incorporating a second first-line treatment drug 
earlier. In the future, we plan to increase the sample size 
further and update the corresponding model versions. 
We aim to develop this model into an installable software 
tool that, upon completing the necessary examinations, 
can automatically recommend a treatment plan for each 
child with IESS based on their electronic health records. 
Details of this hypothetical operational mode can be 
found in the supplementary materials (Fig. S1B). We are 
also working to invite more researchers from other cen-
tres to validate the predictive ability of our model. Simul-
taneously, we are keen to refine the model further based 
on the feedback from researchers at different centres.

Supplementary Information
The online version contains supplementary material available at  h t t p  s : /  / d o i  . o  r 
g /  1 0 .  1 1 8 6  / s  1 3 0 5 2 - 0 2 5 - 0 1 9 5 9 - z.
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