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Abstract
Background  Acute lymphoblastic leukemia (ALL) is a prevalent hematologic malignancy that primarily affects 
children. The diagnosis and treatment of pediatric ALL remain challenging. This study aimed to identify differential 
lipids and metabolites that may hold potential for improving ALL treatment.

Methods  In this retrospective case-control study, serum samples obtained from children with ALL and healthy 
controls were analyzed. Serum lipidome and metabolome alterations of ALL were analyzed by comparing pediatric 
patients with ALL with healthy controls based on liquid chromatography high-resolution mass spectrometry analysis 
of serum lipidomic and metabolomic signatures.

Results  We identified 2,298 lipid features in the serum. Among them, 72 (3.13%) differed significantly in pediatric 
patients with ALL compared to healthy controls. Notably, sphingolipids (ceramide and sphingomyelin) and 
phospholipids exhibited the most pronounced changes. Targeted analysis of ceramides revealed significantly 
elevated levels of Cer 18:0 and Cer 20:0 in the serum of pediatric patients with ALL. Additionally, gut microbial-related 
lipids (such as sulfonolipids and fatty acid esters of hydroxy fatty acids) showed significant alterations. Metabolomic 
analysis identified 15 differential metabolites, indicating disrupted nucleotide and amino acid metabolism. 
Furthermore, the dysregulated lipids and metabolites correlated with various blood indicators, with ceramide and 
nucleosides positively associated with white blood cell count but negatively correlated with hemoglobin and platelet.

Conclusion  These findings shed light on abnormal molecular signatures contributing to pediatric ALL and may serve 
as potential biomarker panel for therapy of ALL.
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Introduction
Leukemia is the most common cancer in children and 
adolescents, accounting for almost one-third of cancers. 
Approximately three-quarters of leukemia are acute 
lymphocytic leukemia (ALL), which is characterized by 
uncontrolled proliferation of abnormal and immature 
lymphocytes [1]. ALL remains a challenging malignancy 
despite advances in treatment. Identifying novel drug tar-
gets is critical for improving therapeutic outcomes and 
overcoming the limitations of current treatment options. 
Metabolic reprogramming has been recognized as an 
important cancer hallmark, and it is characterized as the 
ability of cancer cells to alter their metabolism to support 
tumor growth and angiogenesis, which may be linked to 
identification of potential drug targets [2].

Metabolomics and lipidomics involve the global analy-
sis of biochemicals, providing crucial insight into meta-
bolic alterations under cancerous conditions. These 
techniques also hold promise for rationalizing the selec-
tion of targeted therapies tailored to the metabolic char-
acteristics of cancer patients [3, 4]. In the context of ALL, 
metabolomics has been employed to screen potential 
diagnostic biomarkers during initial treatment. Schraw 
et al. used liquid chromatography-mass spectrometry 
(LC-MS) to profile end-induction plasma, bone marrow, 
and cerebrospinal fluid from children with B-cell acute 
lymphoblastic leukemia (B-ALL). Notably, there was con-
siderable overlap in metabolomes across these samples, 
leading to the conclusion that plasma could serve as a 
suitable matrix for B-ALL biomarkers [5]. Saito et al. 
conducted plasma metabolomic profiling at initial- and 
post-induction therapy time points in patients with ALL, 
detecting 1305 metabolites and lipids. Over 20% of these 
biochemicals exhibited significant alterations in patients 
with ALL [6]. Additionally, Bai et al. analyzed serum 
samples from 15 children with ALL before therapy, 
along with 30 pediatric patients with ALL in remission 
and 60 healthy subjects. They identified 30 differentially 
expressed metabolites between patients with ALL and 
healthy donors, including 9 lysophosphatidylcholines [7]. 
While these studies highlight the importance of meta-
bolic disturbances in the systemic circulation (plasma/
serum) of patients with ALL, a comprehensive under-
standing of lipids and metabolites alterations in pediatric 
patients with ALL, along with their associations with the 
clinical blood indicators, remains to be fully elucidated.

The aim of this study was to investigate metabolic 
changes in the serum of pediatric patients with ALL 
using lipidomic and metabolomic analyses, and explore 
the associations between the differentially expressed bio-
chemicals and clinical blood test results.

Materials and methods
Chemicals and reagents
Ceramide-(d18:1-d7/15:0) and methionine-d3 (≥ 98 atom 
%D, chemical purity ≥ 99%) were purchased from Sigma-
Aldrich (St Louis, MO, USA). Ceramide (Cer) authen-
tic standards (Cer 16:0, 18:0, 20:0, 22:0 and 24:1) were 
obtained from Aladdin (purity > 99%, Shanghai, China). 
Bovine serum albumine (BSA, > 95%) was purchased 
from Sinopharm Chemical Reagent Co., Ltd (Shanghai, 
China). Cer-(d18:1-d7/15:0) and methionine-d3 were 
dissolved in methanol and mixed to prepare the inter-
nal standard working solution at the final concentration 
of 10  μg/mL for both compounds. Cer stock solutions 
(1  mg/mL) were prepared by dissolving an accurately 
weighed amount of each Cer standard in methanol. 
HPLC-grade methanol, isopropanol, acetonitrile, and 
formic acid were used for LC-MS analysis. Other chemi-
cals and solvents were of reagent grade.

Study population and sample collection
Ten children diagnosed with ALL during 2017–2018 at 
the Affiliated Hospital of Qingdao University participated 
in the study. Additionally, ten healthy children without 
hematological and oncology diseases were included as 
controls from outpatient clinic. All subjects ranged in 
age from 0 to 14 years. Samples from patients with ALL 
were collected prior to treatment. Serum samples were 
prepared from the collected whole blood and stored at 
-80oC until analysis. Ethical approval was obtained from 
the Affiliated Hospital of Qingdao University Institu-
tional Review Board (QYFYKYLL 971311920-1), and 
the study was conducted in accordance with the Decla-
ration of Helsinki. Informed consent was obtained from 
the parents or guardians of all participating children, 
and all procedures adhered to relevant guidelines and 
regulations.

Clinical blood test
Sysmex hematology analyzer (Sysmex XN9000, Japan) 
was used to perform blood analysis, including neutrophil 
count (NEU), white blood cell count (WBC), red blood 
cell count (RBC), hemoglobin (HGB) and platelet (PLT).

Untargeted lipidomic and metabolomic analysis
Serum sample preparation was performed following 
a previously published method [8]. Briefly, a biphasic 
extraction with water, methanol, and methyl tert-butyl 
ether (MTBE) was used to separate non-polar and polar 
metabolites. Ten microliters of internal standard working 
solution were added to 20 μL of serum sample. After add-
ing 130 μL of methanol, the samples were vortexed for 
5 min, and 500 μL of MTBE was added. The samples were 
shaken for 20  min, and 125 μL of ultrapure water was 
added to induce phase separation. After centrifugation at 
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13,000 rpm for 5 min, the upper layer (lipid fraction) was 
collected, and 400 μL MTBE was added for the second-
ary extraction. The lipid fraction was pooled and dried 
under nitrogen flow. The lower layer (aqueous fraction) 
was collected and lyophilized. The samples were stored at 
-80oC until analysis. Pooled rat plasma was used to pre-
pare quality control (QC) samples, which were extracted 
as described above.

Sample preparation for quantitative analysis of ceramides 
in the serum
Given the endogenous presence of Cer 16:0, 18:0, 20:0, 
22:0 and 24:1 in human serum, a surrogate matrix of 
5% BSA in water was employed for preparing the cali-
bration standards [9]. Calibration standards of Cer 16:0 
(10–3,000 ng/mL), Cer 18:0 (1–3,000 ng/mL), Cer 20:0, 
22:0 and 24:1 (3–1,000 ng/mL) were prepared. For cali-
bration standards and QC samples, 20 μL of the standard 
was added into a 1.5 mL centrifuge tubes, followed by 20 
μL of 5% BSA solution and 10 μL of the internal standard 
solution (Cer-(d18:1-d7/15:0) at 1000 ng/mL). For serum 
samples, 20 μL of the sample was aliquoted into a 1.5 
mL centrifuge tube, and 20 μL of methanol was added, 
along with 10 μL of the internal standard solution. To 
each sample, 120 μL of isopropanol was added to precipi-
tate the protein. After vortex mixing and centrifugation 
at 13,500 rpm for 15 min, the supernatant was analyzed 
using LC-MS/MS.

Lipidomic analysis using UHPLC-HRMS
Lipidomic analysis was performed using the SII liquid 
chromatography system coupled to a Thermo Q-Exac-
tive Focus Orbitrap high resolution mass spectrometer 
(HRMS) equipped with a heated electrospray ion source 
(Thermo Scientific, CA, USA). Ultra-high performance 
liquid chromatography (UHPLC) was performed on a 
Waters ACQUITY UPLC®BEH-C8 column (2.1 × 50 mm, 
1.7  μm). The mobile phase A consisted of 60/40 water/
acetonitrile (containing 10 mM ammonium formate 
and 0.1% formic acid), while mobile phase B consisted 
of 90/10 isopropanol/acetonitrile (containing 10 mM 
ammonium formate and 0.1% formic acid). The flow rate 
was 250 μL/min, and the column temperature was main-
tained at 40oC. The mobile phase gradient was from 32% 
B to 97% B over 25 min, maintained at 97% B for 4 min, 
and re-equilibrated with 32% B for 6 min. Lipid fraction 
samples were dissolved in 100 μL of the initial mobile 
phase, and 10 μL was injected into UHPLC-HRMS. The 
MS analysis was performed in both positive and negative 
ionization modes. The ion source parameters were set as 
follows: the sheath gas and auxiliary gas were nitrogen, 
and the flow rate was 35 arb and 12 arb, respectively. 
The capillary temperature was 330oC, and the spray volt-
age was 4000  V and − 3800  V for positive and negative 

ionization modes, respectively. The temperature of the 
probe heater was 325oC. The S-Lens RF level was 45. The 
serum samples were injected following random orders 
during the analysis. During sample analysis, serum sam-
ples were injected in random order, generated using an 
online random number generator (​h​t​t​p​​s​:​/​​/​w​w​w​​.​c​​a​l​c​​u​
l​a​​t​o​r​.​​n​e​​t​/​c​​a​l​o​​r​i​e​-​​c​a​​l​c​u​l​a​t​o​r​.​h​t​m​l). The QC sample was 
injected after every six serum samples. Method repro-
ducibility was assessed by calculating the median rela-
tive standard deviation (RSD) of UHPLC-HRMS peak 
areas for metabolites across all technical replicates of QC 
samples.

Metabolomic analysis using UHPLC-HRMS
Freeze-dried aqueous fraction samples were reconsti-
tuted in 100 μL of methanol/water (8: 2, v/v), and 10 μL 
was injected into UHPLC-HRMS. The metabolomic 
analysis was performed by using a previously reported 
method [10]. Briefly, Chromatographic separation 
was performed on the SeQuant®ZIC®-pHILIC column 
(2.1 × 150 mm, 5 μm). The mobile phase consisted of (A) 
20 mM (NH4)2CO3 aqueous solution containing 0.1% 
NH4OH and (B) acetonitrile. The flow rate was 150 μL/
min, the column temperature was maintained at 40oC. 
Chromatographic separation was performed using a lin-
ear gradient from 80 to 20% B over 20 min, maintained at 
20% B for 1 min, and re-equilibrated at 80% B for 5 min. 
The MS was performed in both positive and negative ion 
modes. The ion source parameters were set as follows: 
the sheath gas and auxiliary gas were nitrogen, and the 
flow rate was 40 arb and 15 arb, respectively. The capil-
lary temperature was 275oC, and the spray voltage was 
3000 V and − 3000 V for positive and negative ionization 
modes, respectively. The temperature of the probe heater 
was 325oC. The S-Lens RF level was 45. Sample injection 
followed the same sequence as the lipidomic analysis.

Targeted analysis of ceramides using LC-MS/MS
Quantitative analysis of serum ceramides was performed 
using a high performance liquid chromatography sys-
tem (Shimadzu, Japan) coupled to an API4000 Qtrap 
MS (Sciex, USA). Chromatographic separation was 
performed on a Venusil® XBP C18 (2.1 × 50  mm, 5  μm) 
column. Mobile phase A consisted of 60/40 water/ace-
tonitrile (containing 10 mM ammonium formate and 
0.1% formic acid) and B consisted of 90/10 isopropanol/
acetonitrile (containing 10 mM ammonium formate and 
0.1% formic acid). The flow rate was 300 μL/min, and the 
column temperature was 40oC. The mobile phase gradi-
ent was 80% B to 99% B over 1.5 min, maintained at 99% 
B for 2.5 min, and re-equilibrated with 80% B for 3 min. 
The parameters of mass spectrometry detection were 
set as follows: collision gas (CAD) was 8 psi; curtain gas 
(CUR) was 10 psi; heating gas (GS1) was 40 psi; nebulizer 
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gas (GS2) was 40 psi. The ion spray voltage (IS) was 
4500 V. The ion source temperature was 450 °C. The data 
acquisition and analysis were performed using Analyst 
1.6.3 (AB Sciex, United States). Calibration curves were 
established using a 1/x2 weighted linear regression. The 
t-test was used to compare the difference of ceramide 
levels between pediatric patients with ALL and healthy 
controls, with significance accepted at p < 0.05.

Lipidomic and metabolomic data processing
The raw LC-MS data (*.RAW) were converted to the *.abf 
format using abfConverter (Reifycs Inc). These trans-
formed data were then analyzed with MS-DIAL soft-
ware (v.4.90) for LC-MS peak alignment, identification, 
and integration. A blank comparison was performed by 
retaining LC-MS features where the maximum intensity 
from a serum sample was at least ten times higher than 
the average of the solvent blanks. For metabolomic data 
analysis, the MSP libraries of MSMS-Public-Pos-VS16 
and MSMS-Public-Neg-VS16 were used, which contain 
the spectral information of metabolite standards under 
positive and negative modes, respectively. In lipidomic 
data analysis, [M + H]+, [M + NH4]+ and [M + H−H2O]+ 
were selected in the adducted ion settings for the positive 
ionization mode data, while [M−H]− and [M + HCOO]− 
were used for negative ionization mode. The lipid class 
nomenclature is based on commonly accepted terms and 
builds upon the LIPID MAPS terminology [11, 12]. Both 
lipidomic and metabolomic data have been deposited in 
the EMBL-EBI MetaboLights database with identifiers of 
MTBLS8814 and MTBLS8817, respectively.

Statistical analysis
The data normalized with internal standards were 
imported into MetaboAnalyst (versions 5.0, ​h​t​t​p​​s​:​/​​/​g​e​
n​​a​p​​.​m​e​​t​a​b​​o​a​n​a​​l​y​​s​t​.​c​a​/) for univariate and ​c​h​e​m​o​m​e​t​r​i​

c​s statistical analysis, including unsupervised principal 
component analysis (PCA), partial least squares discrimi-
nant analysis (PLS-DA) and volcano plot analysis. Differ-
ential lipids were selected based on false discovery rate 
(FDR) adjusted p-value < 0.05 and|log2(fold change)| > 1 
in the volcano plot. Statistical significance of differential 
metabolites between ALL and control groups was deter-
mined using Student’s t-test in GraphPad Prism 8.0.1 
(Boston, MA, USA).

Metabolomic networks were constructed using the 
MetaMapp approach (web-based portal, version 2020), 
which calculated biological pathways relevance (KEGG 
reactant pairs) and chemical structural similarity (Tani-
moto coefficient > 0.7). The resultant data were down-
loaded from the job page and further visualized in 
CytoScape 3.8.0. Spearman’s correlation analysis was 
performed on the Tutools platform ​(​​​h​t​t​p​:​/​/​w​w​w​.​c​l​o​u​d​t​u​
t​u​.​c​o​m​/​​​​​) to explore the relationship between differential 
lipids/metabolites and clinical blood indicators. The cor-
relation was evaluated using the correlation coefficient (r) 
value and its 95% confidence interval (CI), expressed as 
r (lower CI, upper CI), with p < 0.05 indicating statistical 
significance. Heatmaps for the correlation analysis were 
generated using GraphPad Prism 8.0.1 (Boston, MA, 
USA).

Results
Demographic and clinical characteristics of subjects
Blood/serum samples from 10 patients with ALL (mean 
age 6.4 ± 3.6 years, range 0.58-14 years, 4 males and 6 
females (4 patients for standard risk, 5 patients for inter-
mediate risk and 1 patients for high risk) were investi-
gated (Table  1). Additionally, ten age-matched control 
subjects (mean age 7.2 ± 2.0 years) were included in the 
study. All participants were Chinese with normal weight 
and no cases of overweight or obesity. Blood tests showed 
that NEU, RBC, HGB, and PLT were significantly lower in 
ALL patients compared with healthy controls. Although 
there was a trend of higher WBC in ALL patients com-
pared to control subjects, the difference was not statisti-
cally significant (Table 1).

Multivariate analysis of lipidome and metabolome
The median RSD values for lipids and metabolites 
detected in QC samples were less than 15%, indicating 
that the analyses were reproducible. Multivariate data 
analysis, including PCA, PLS-DA, and heatmap visual-
ization, was performed to identify differentially expressed 
features in pediatric patients with ALL compared to con-
trols. PLS-DA based supervised chemometric algorithm 
was applied to identify the differential lipids and metabo-
lites (Fig.  1). The results revealed significant differences 
between patients with ALL and controls, indicating 
considerable variation in serum lipid and metabolite 

Table 1  Demographic and clinical characteristics
Demographic characteristics ALL (n = 10) Con (n = 10) p
Age, years 6.4 ± 3.6 7.2 ± 2.0 0.5509
Sex, N (%)
Male 4 (40) 8 (80) 0.0679
Female 6 (60) 2 (20)
BMI, N (%)
< 18.5 kg/m2 9 (64.3) 6 (60) 0.2895
18.5–23.9 kg/m2 5 (35.7) 4 (60)
WBC 80.1 ± 140.0 7.1 ± 1 0.8 0.1356
NEU 1.5 ± 1.9 3.4 ± 1.3 0.0229
RBC 3.2 ± 0.8 4.8 ± 0.3 < 0.0001
HGB 89.1 ± 20.4 133.8 ± 6.6 < 0.0001
PLT 78.9 ± 45.5 265.4 ± 36.7 < 0.0001
ALB 39.3 ± 5.3 43.1 ± 2.3 0.0623
Mean ± SD was shown for the variable. WBC, white blood cell count; NEU, 
neutrophil count; RBC, red blood cell count; HGB, hemoglobin; PLT, platelet; 
ALB, albumin

https://genap.metaboanalyst.ca/
https://genap.metaboanalyst.ca/
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compositions under the ALL conditions. The total cumu-
lative variance of the first two principal components was 
43% (component 1: 22.2%, component 2: 20.8%) for lipi-
domics (Fig. 1A), and 31.2% (component 1: 11.2%, com-
ponent 2: 20%) for metabolomics (Fig.  1B), indicating 
that the model effectively distinguished between the two 
groups based on biochemical characteristics.

Lipidomics
After MS-DIAL data processing, 952 and 1,346 lip-
ids were detected in positive and negative ionization 
mode, respectively. Changes in serum lipid profiles in 
patients with ALL are illustrated in the volcano plots 
(Fig.  2A). A total number of 72 differentially expressed 
lipids (Log2(FC) > 1 or < 1, FDR adjusted p < 0.05) were 
detected, with 67 lipids increased and 5 decreased in 
the pediatric ALL group compared to controls. Fourteen 
lipids from nine lipid classes, including Cer, hexosylce-
ramide (HexCer), fatty acid (FA), lysophosphatidic acid 
(LPA), N-acyl-lysophosphatidylserine (LNAPS), N-ara-
chidonoyl glycine (NAGly), phosphatidylethanolamine 
(PE), ceramide phosphoethanolamine (PE-Cer) and sul-
fonolipid (SL), were identified as the most significantly 
changed lipid species with log10(p) values > 3. Histo-
grams of these lipids were shown in Fig. 2B.

The 72 differential expressed lipids were primarily clus-
tered in the lipid class (containing more than 5 differen-
tially expressed lipid species) of lysophosphatidylserine 
(LNAPS), Cer, sphingomyelin (SM), phosphatidylcholine 
(PC). Sphingolipid was identified as one of the major 
affected lipid classes in patients with ALL. Among the 72 
differential lipids, 26 belonged to the sphingolipid class 

(36.1%), including Cer, SM, HexCer, PE-Cer, dihexosyl-
ceramide (Hex2Cer) and sulfatide (SHexCer). Among 
these sphingolipids, 88.5% were elevated in the serum of 
pediatric patients with ALL. The metabolic pathway of 
sphingolipids was shown in Fig.  3A. Histogram of Cer, 
HexCer, SM, and PE-Cer differential lipids were shown in 
Fig. 3B-E.

Metabolomics
After MS-DIAL processing of metabolomic data, 152 and 
137 metabolites were assigned under positive and nega-
tive ion modes, respectively. Volcano plot and variable 
importance in projection (VIP) scores were used to iden-
tify differentially expressed metabolites in the serum of 
patients with ALL. Fifteen differential metabolites were 
identified with p < 0.05 (Table 2). Among these, 11 metab-
olites were increased and 4 metabolites were decreased 
in the ALL group compared to the control group. To 
further delineate the metabolic changes in patients with 
ALL, a network analysis was performed, resulting two 
compound clusters covering nucleotides and amino acids 
(Fig.  4). All metabolites in the nucleotide cluster were 
elevated in patients with ALL compared with controls. 
Conversely, decreases in homoarginine, 1-stearoyl-sn-
glycero-3-phosphocholine, glu-gln, and taurine were 
observed in the ALL group compared to control subjects 
(Fig. 4).

Targeted analysis of ceramides in the serum
Cer is one of the major types of differential lipids identi-
fied in the untargeted lipidomic analysis. Therefore, a tar-
geted analysis of Cer in serum was performed to confirm 

Fig. 1  Partial least squares discriminant analysis of lipidome (A) and metabolome (B) in serum samples from pediatric ALL patients and control subjects. 
Red circle: ALL sample; green circle: control sample
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Fig. 2  Differentially expressed lipids in serum samples from pediatric ALL patients compared to control subjects (n = 10). (A) Volcano plot illustrating 
serum lipid differences between pediatric patients with ALL and controls. Red circle: FDR adjusted p < 0.05 and log2(FC) > 1; blue circle: FDR adjusted 
p < 0.05 and log2(FC) < -1. (B) Histogram of the 14 top significantly changed lipids (-Log10(p) > 3, Log2(FC) > 1). *** p < 0.001; **** p < 0.0001
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Fig. 3 (See legend on next page.)
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the lipidomic results. Table 3 showed the serum concen-
trations of Cer 16:0, 18:0, 20:0, 22:0 and 24:1 in pediatric 
patients with ALL and healthy children. The serum level 
of Cer 18:0 was significantly higher in pediatric patients 
with ALL compared to healthy controls, consistent with 
the lipidomic result. The UHPLC-Orbitrap MS response 
of Cer 20:0 was below the intensity limit setting in the 
MS-DIAL and was therefore filtered out in lipidomic 
data analysis. However, targeted analysis with improved 
detection sensitivity revealed that the serum level of Cer 
20:0 was significantly higher in the pediatric patients 
with ALL compared to the controls.

Correlation of differentially expressed serum biochemicals 
with the clinical blood indicators
The clinical indicators of RBC, HGB, and PLT were 
significantly decreased in the blood of patients with 
ALL (Table  1). A correlation analysis of differentially 
expressed lipids and metabolites with laboratory clinical 
indicators was conducted using Spearman’s correlation 
analysis. The results indicated significant associations 
between the differential lipids/metabolites and clinical 
blood indicators (Fig.  5). In addition, these differential 
lipids/metabolites were not significantly correlated with 
age, BMI, or sex, while 23 lipids were significantly cor-
related with blood indicators, including 12 sphingolipids 
(7 ceramides, 2 hexosylceramides, 2 sphingomyelins, and 
1 ceramide phosphoethanolamine) and 8 phospholipids. 
Eleven lipids and 8 metabolites were positively correlated 
(p < 0.05) with WBC, which showed an increasing trend 
in the patients with ALL, though not statistically signifi-
cant (Table 1). The levels of Cer 18:0 was increased in the 
serum of patients with ALL, and its correlation coeffi-
cient (r) with WBC was 0.76 (CI: 0.47, 0.90, p = 0.0002). 
Conversely, the correlation coefficient (r) of Cer 18:0 with 
HGB and PLT was − 0.53 (CI: -0.79, -0.10, p = 0.0199) and 
− 0.59 (CI: -0.83, -0.19, p = 0.0073), respectively. Similarly, 
nucleosides such as uracil and hypoxanthine were the 
major metabolites positively associated with WBC but 
negatively correlated with PLT and HGB.

Discussion
In this study, the serum samples from pediatric patients 
with ALL were investigated using lipidomic and metab-
olomic analyses, and the correlations of differentially 
expressed biochemicals with clinical blood indicators 
were identified. Sphingolipid was the top significantly 

changed lipid class in pediatric patients with ALL, which 
accounted for 34.0% of the detected differential lipids, 
and serum sphingolipid levels were significantly higher in 
the pediatric patients with ALL compared to healthy con-
trols. Targeted Cer analysis showed that Cer 18:0 and Cer 
20:0 were upregulated in the serum of pediatric patients 
with ALL. Additionally, Cer 18:0 was closely correlated 
with the blood indicators of WBC, HGB and PLT.

Ceramides can be generated by de novo synthesis from 
palmitoyl CoA catalyzed by fatty acid synthase (FASN) 
[13]. It was reported that FASN was overexpressed in 
a variety of cancers including leukemia [14, 15]. Addi-
tionally, FASN overexpression led to the higher basal 
ceramide levels in MCF7 cells [16]. Intriguingly, FASN 
was a poor prognostic factor for pediatric ALL and its 
upregulation contributed to poor response to chemo-
therapy in ALL [17]. These results suggested a poten-
tial association between high ceramide levels and drug 
resistance in ALL. In addition, inhibition of fatty acid 
synthase activity may be a potential strategy for the treat-
ment of leukemia [14]. CerS1-generated Cer 18:0 influ-
ences cancer cell survival, apoptosis, and mitophagy 
[18]. Moreover, it regulates the resistance to imatinib-
induced apoptosis in K562 human chronic myeloid leu-
kemia cells [19]. Dany et al. analyzed CerS1 mRNA and 
its impact on survival using the AML database in the 
Cancer Genome Atlas Research Network, and found that 
10 out of 166 AML patients exhibited upregulated CerS1 
mRNA expression, and showed significantly longer over-
all and disease-free survival compared with those with 
basal CerS1 mRNA abundance [20]. Ceramides can be 
also generated from the hydrolysis of sphingomyelin by 
sphingomyelinases. Kim et al. identified missense muta-
tions in sphingomyelin phosphodiesterase 3 (SMPD3) 
in the ALL cell lines of CCRF-CEM and MOLT-4. Fur-
ther nucleotide sequencing of a panel of 33 ALL cell 
lines showed that 5 samples had SMPD3 gene muta-
tions, providing genetic evidence on the specific role of 
SMPD3 in ALL [21]. Taken together, sphingolipids may 
serve as serum biomarkers in pediatric patients with 
ALL, and targeting enzymes in the sphingolipid metab-
olism pathway may open up new avenues for improved 
combination therapies against leukemia drug resistance. 
However, sample size in this study is limited and larger 
populations of childhood patients with ALL in prospec-
tive cohort studies may help prove the validity of our 
results. In future studies, we should increase the number 

(See figure on previous page.)
Fig. 3  Sphingolipid metabolism disruption in the serum of pediatric ALL patients. (A) Metabolic pathways of sphingolipids, including key enzymes FASN 
(fatty acid synthase), SPT (serine palmitoyltransferase), KDSR (3-keto-dihydrosphingosine reductase), CerS (ceramide synthase), DES (dihydroceramide 
desaturase), SMase (sphingomyelinase), SMS (sphingomyelin synthase), CPES (ceramide phosphoethanolamine synthase), Gba, (glucocerebrosidase), and 
GCS (glucosylceramide synthase). The blue box highlighted differential sphingolipids detected in this study, while the orange oval represented the en-
zymes involved in the metabolism of sphingolipids; Histograms showing differentially expressed (B) ceramides, (C) sphingomyelin, (D) hexosylceramide, 
and (E) ceramide phosphoethanolamine between ALL patients and control subjects. The relative abundance of each lipid was demonstrated by the 
Log10. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001
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of samples, collect bone marrow and peripheral blood 
samples when ALL patients are diagnosed, and then iso-
late mononuclear cells to analyze the expression levels of 
enzymes in FASN and sphingolipid metabolism pathway 
(including CerS, SMPD, etc.) [17]. Further analysis of the 

mechanism of ceramide upregulation in ALL patients 
will open new avenue for ALL treatment.

Emerging evidence has established a bidirectional rela-
tionship between gut microbiota and leukemia. Patients 
with leukemia exhibit decreased intestinal barrier 

Table 2  Differential expressed metabolites for metabolomics analysis
Metabolites Formula m/z RT (min) P value Log2(FC) (AL/Con) Adduct
Uracil C4H4N2O2 111.0185 4.93 0.0128 1.4925 [M-H]−

Niacinamide C6H6N2O 123.0555 4.04 0.0410 2.5204 [M + H]+

Taurine C2H7NO3S 126.0219 8.83 0.0026 -0.85337 [M + H]+

N-Acetylputrescine C6H14N2O 131.118 12.73 0.0002 1.0755 [M + H]+

Threonic acid C4H8O5 135.03 5.25 0.0077 1.7548 [M-H]−

Hypoxanthine C5H4N4O 137.0457 5.14 0.0077 1.7431 [M + H]+

Acetylserine C5H9NO4 146.0445 2.38 0.0333 1.5244 [M-H]−

Homoarginine C7H16N4O2 189.1347 16.78 0.0007 -1.2178 [M + H]+

N, N-Dimethylarginine C8H18N4O2 203.1502 13.38 0.0028 1.2431 [M + H]+

Uridine C9H12N2O6 243.0615 4.94 0.0131 1.5601 [M-H]−

Cytidine C9H13N3O5 244.0926 6.52 0.0198 2.1003 [M + H]+

Inosine C10H12N4O5 267.074 5.77 0.0063 3.3248 [M-H]−

Glu-Gln C10H17N3O6 274.1039 10.07 0.0123 -0.98898 [M-H]−

N2,N2-Dimethylguanosine C12H17N5O5 312.1301 4.15 0.0015 2.1282 [M + H]+

1-Stearoyl-sn-glycero-3-phosphocholine C26H54NO7P 524.3721 4.05 0.0012 -1.4239 [M + H]+

Fig. 4  MetaMapp metabolomic networks illustrating differentially expressed metabolites in serum samples from pediatric ALL patients. Nodes represent 
individual metabolites, while edges denote biochemical (KEGG reactant pairs) and chemical (Tanimoto coefficient > 0.7) relationships. The orange circle 
indicates a significant increase in pediatric patients with ALL compared to controls, whereas the blue circle represents a significant decrease. The relative 
abundance of each metabolite is demonstrated by the Log10 (normalized peak area). * p < 0.05; ** p < 0.01; *** p < 0.001
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function and disturbances of the intestinal flora [22, 23]. 
In addition, the gut microbiome significantly influences 
the onset, progression, prognosis, and treatment of ALL 
[23]. Studies have reported a higher relative abundance 
of Bacteroidetes in patients with ALL compared to con-
trols at the time of diagnosis [24, 25]. Bacteroidetes, 
one of the most abundant gut microbial phyla, can pro-
duce sphingolipids [26]. Specifically, biosynthesis of Cer 
beta-hydroxy fatty acid-sphinganine and PE-Cer have 
been observed in Bacteroides fragilis and Bacteroides 
thetaiotaomicron [27, 28]. Furthermore, recent research 

has demonstrated that sphingolipids derived from Bac-
teroidetes could modulate the host ceramide levels [29]. 
SL, an unusual class of sphingolipids with a sulfonic acid 
group in the sphingoid base, is structurally related to 
ceramides and is a lipid class found in the outer mem-
branes of Gram-negative bacteria in the Bacteroidetes 
phylum. Therefore, gut microbial dysbiosis could par-
tially explain the elevated serum sphingolipids and SL 
levels in patients with ALL observed in the current study. 
Taken together, the gut microbiome plays a multifaceted 
role in blood cancers, and our results suggest a potential 
role for gut microbial-related lipids in ALL. In follow-up 
studies, stool samples should be collected at the same 
time as serum. The addition of disease microbiome anal-
ysis, combined with multi-omics analysis, will provides 
more evidence for the link between microbiota and lipid 
profiles.

Cancer cells are known to reprogram nucleoside and 
amino acid metabolism to sustain tumor progression, 
support relapse, and confer the resistance to anticancer 
drug [30]. The current metabolomic study showed that 

Table 3  Serum ceramide levels in ALL pediatric patients and 
healthy control subjects
Ceramide ALL (ng/mL) Con (ng/mL) p value
C16 543.3 ± 483.9 355.2 ± 105.6 NS
C18 158.9 ± 98.5 72.7 ± 35.6 0.0238
C20 525.8 ± 192.4 323.1 ± 111.6 0.0136
C22 1676.0 ± 428.8 1624.3 ± 466.1 NS
C24:1 2080.4 ± 765.2 1517.9 ± 519.9 NS
Data are presented as means ± SD. NS: not significant

Fig. 5  Correlation heat map of differentially expressed lipids and metabolites with clinical blood indicators. The correlation coefficient r represented the 
correlation between two variables. * p < 0.05; ** p < 0.01, *** p < 0.001
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nucleoside and amino acid metabolism were disturbed 
in patients with ALL, with higher levels of uracil, hypo-
xanthine, uridine, cytidine, inosine, threonic acid and 
homoarginine observed in children with ALL compared 
to controls. Consistent with our findings, Hashimoto et 
al. reported that plasma hypoxanthine levels in patients 
with ALL (25.5 ± 17.5 μM) were significantly higher than 
those in healthy adult controls (4.0 ± 1.4 μM) [31]. Nucle-
otide biosynthesis is a fundamental metabolic process 
crucial for cell proliferation and survival, as it ensures 
the availability of raw material for nucleic acid synthe-
sis. Rapid proliferating cancer cells must meet the high 
nucleotide demand associated with their growth [32]. 
While the abnormal metabolism of tumors promotes 
cell proliferation, it also introduces metabolic vulner-
abilities that can be therapeutically targeted. Nucleotide 
synthesis pathways have been effectively targeted in leu-
kemia [33–36]. For instance, reducing the production 
of deoxycytidine triphosphate by inhibiting both de 
novo and nucleotide rescue pathway has shown efficacy 
in mouse models of ALL [36]. Furthermore, dysregu-
lated nucleotide metabolism can interact with the host 
immune system and promote tumor growth. Increasing 
evidence suggests that targeting nucleotide metabolism 
can increase the antitumor immune response [37]. Cur-
rent pediatric ALL treatment strategies have improved 
5-year overall survival rates to exceeding 90% [38]. How-
ever, a considerable percentage of patients suffer from 
relapse, and the survival rates drop to about 50% in 
relapsed cases [39]. Since relapse is mainly due to che-
motherapy resistance, therapies that may synergize with 
or re-sensitize cells to chemotherapy are of urgent need. 
Combining nucleotide-targeted therapies with existing 
chemotherapy regimens may enhance treatment efficacy, 
and investigating these synergistic effects could lead to 
more effective therapeutic strategies.

The current study has limitations: (1) The sample size 
is small which limits the generalizability of our findings; 
(2) The potential mechanisms underlying the observed 
upregulation of serum ceramide levels in ALL patients 
are not investigated; (3) The diversity and composition 
of the microbiota at the time of ALL diagnosis were not 
analyzed, and the potential connection between the 
microbiota and lipid profiles was not established. These 
limitations underscore the need for further investigation. 
To address these gaps, we propose future studies with 
larger cohorts to improve the robustness of our find-
ings. We also plan to collect bone marrow and peripheral 
blood samples at the time of ALL diagnosis for isolating 
monocytes and extracting total RNA. This will enable 
detailed analysis of the expression levels of key enzymes 
involved in the FASN and sphingolipid metabolism path-
ways (e.g., CerS, SMPD, etc.), providing insights into the 
mechanisms of ceramide upregulation in ALL patients. 

Moreover, stool samples will be collected concurrently 
with serum samples in future experiments. By incorpo-
rating microbiota diversity analysis and leveraging multi-
omics approaches, we aim to uncover potential links 
between microbiota composition and lipid profiles.

Conclusions
In conclusion, comprehensive lipidomic and metabolo-
mic analyses were used to identify biochemical signatures 
in the serum of pediatric patients with ALL. Sphingolipid 
was identified as a major lipid group significantly upreg-
ulated in these patients, showing a positive association 
with WBC. Additionally, lipids potentially related to a 
disrupted gut microbiome were identified in ALL sub-
jects. Metabolomic analysis also revealed the alterations 
in nucleoside and amino acids metabolism in children 
with ALL. Further large-scale clinical studies are nec-
essary to confirm these biochemical changes and their 
association with gut microbiome functions in pediatric 
ALL patients.
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