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Abstract 

Background Childhood epilepsy is a common neurological syndrome with complex etiology and recurrent seizures. 
It seriously affects the growth and development of child patients.

Methods NR3C1 rs41423247 and FAAH rs324420 polymorphisms were detected by the polymerase chain reaction 
in 105 pediatric epilepsy patients. Patients were divided into the good response group and the poor response group 
after anti-seizure medications (ASMs) treatment. According to the results of the liver function test (LFT), patients were 
divided into the no LFT disturbance group and the LFT disturbance group. Hardy–Weinberg balance was applied 
to analyze the population representation. The correlations were calculated by logistic regression analysis.

Results NR3C1 rs41423247 genotype and allele frequencies differed significantly between good response and poor 
response groups, while FAAH rs324420 did not. The CG genotype and C allele of NR3C1 rs41423247 were associated 
with good drug response, and the association was also detected in the dominant model. In addition, polymorphisms 
in NR3C1 and FAAH were not associated with liver damage induced by epilepsy medication.

Conclusion The polymorphism of NR3C1 rs41423247 might influence the drug response of epilepsy children.

Keywords NR3C1 rs41423247, FAAH rs324420, Drug response, Epilepsy, Liver dysfunction

Introduction
Epilepsy is a disorder in which patients experience sud-
den, brief, and recurrent seizures of symptoms and/or 
signs, caused by a variety of etiological factors that result 
in abnormal or excessive firing activity of neurons in the 
brain [1]. Seizures, in the form of altered consciousness, 
involuntary motor, sensory, or psychiatric events, are a 
common chronic disease of the nervous system and are 
a significant cause of disability and death [2]. Since there 
is still a lack of effective preventive measures and cures 
for epileptic disorders at this stage, most patients require 
regular long-term drug therapy. Antiepileptic drugs are 
used to control the frequency of epileptic seizures and 
can be used as a single drug, but they are usually admin-
istered in combination with multiple drugs [3]. Most 
anti-seizure medications (ASMs) have different degrees 
of adverse effects, with dose-related adverse effects being 
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the most common, including tremors, anorexia, nausea, 
vomiting, and drowsiness [4]. Long-term use is difficult 
for patients to accept, and therefore is prone to inter-
ruptions in treatment and recurrence of the disease. 
The ineffectiveness of antiepileptic treatment affects as 
many as 30% of epileptic patients, which is particularly 
important in the clinical treatment of epilepsy [5, 6]. The 
role of genetic diversity in the pathogenesis of epilepsy 
drug resistance seems indisputable [7]. Accordingly, this 
research spotlighted the roles of genetic polymorphism 
in treating epilepsy.

Single-nucleotide polymorphisms (SNPs) refer to sin-
gle-nucleotide variations in a genetic sequence among 
people, which are the most frequent nucleotide varia-
tions in the human genome. SNPs are associated with 
epilepsy, which can influence the occurrence and therapy 
efficacy of epilepsy. The last decade has observed a signif-
icant improvement in unraveling several mutations in the 
genes that are responsible for drug resistance and associ-
ated adverse drug reactions in the treatment of epilepsy 
[8]. For example, the G allele of rs1491974 or rs6798347 
of microglial P2Y12 receptors may elevate the risk of the 
frequency of seizure [9]. The rs57095329 SNP of miR-
146a and rs3789243 of ATP-binding cassette subfamily B 
member 1 influence the drug response and resistance of 
epilepsy, which may guide the clinical treatment [10, 11]. 
These investigations unveil that SNPs play crucial roles in 
epilepsy. These findings would help the concerned neu-
rologists to prescribe the medicine in epilepsy patients 
with more accuracy and to achieve the maximum thera-
peutic benefit. This would also help to improve the qual-
ity of life of patients with epilepsy and will avoid the 
recurrence of seizures.

Glucocorticoid receptor (NR3C1) is a gene encoded 
glucocorticoid receptor. The rs41423247 locus of NR3C1 
carries a significantly higher frequency of the G allele in 
patients with functional seizures and major depression 
[12]. Mutations in fatty acid amide hydrolase (FAAH) 
(C385A; rs324420) have been associated with alterations 
in fronto-amygdala function, which may be associated 
with anxiety and fear symptoms [13]. COMT rs4680, 
FAAH rs324420, and OPRM1 rs1799971 models are 
related to the response of a placebo to nerve pain and can 
predict the effect of a placebo [14]. FAAH C384A geno-
type is associated with the risk of generalized epilepsy in 
Iranians [15]. Nowadays, the SNPs in NR3C1 and FAAH 
on the drug response of epilepsy remain unclear.

In this observation, the polymorphism of the 
rs41423247 locus on the NR3C1 gene and the rs324420 
locus on the FAAH gene in children with epilepsy were 
detected, and the relationship between them and drug 
response in children with epilepsy was analyzed, so as 
to understand the clinical significance of these genetic 

polymorphisms in improving treatment outcomes for 
children with epilepsy.

Materials and methods
Participants
105 epileptic patients who were diagnosed and treated by 
Dongying People’s Hospital from June 2021 to October 
2023 and met the criteria for admission and discharge 
were selected. This study has been approved by the Eth-
ics Committee of Dongying People’s Hospital. All sub-
jects signed informed consent before entering the group 
to collect blood samples. To protect patient privacy, 
only authorized medical personnel are allowed to access 
patient data. And the medical staff strictly follow the pri-
vacy policies established by the hospital.

Epilepsy is diagnosed by electroencephalography (EEG) 
examination results or typical seizure history. The diag-
nostic criteria refer to the Practical Clinical Definition of 
Epilepsy published by ILAE in 2014 The included crite-
ria were: (1)  receiving ASM treatment over 12 months; 
(2) aged from 2 years old to 17 years old, and (3) no con-
sanguineous relationship between the subjects and no 
history of intermarriage. Patients with the following char-
acteristics were excluded from the study: 1) comorbidity 
with other psychiatric disorders, 2) pseudoseizures, 3) 
unreliable seizure frequency without continuous electro-
encephalographic (CEEG) monitoring, 4) comorbidity 
with liver disease that can affect our detection indicators 
and failure of vital organs that can affect the life safety, 5) 
non-compliance with ASM treatment, and 6) incomplete 
clinical records.

Drug response to ASM therapy in patients with epi-
lepsy was determined according to the International 
League Against Epilepsy (ILAE) definitions. A good 
drug response indicated completely seizure-free patients 
based on regular follow-up for at least 1 year during 
monotherapy or combination therapy at the best toler-
ated therapeutic dose [16, 17]. Patients with an adverse 
response are those who have been correctly medicated at 
the maximum tolerated dose for at least 12 months after 
monotherapy or combination therapy, with ineffective-
ness and persistent seizures.

Liver function tests (LFT), including alanine ami-
notransferase, aspartate aminotransferase, alkaline 
phosphatase, total bilirubin, direct bilirubin, and so on, 
were performed to assess liver function at baseline and 
outpatient clinic follow-ups at 12 months after ASM 
treatments.

DNA isolation from blood samples
DNA was extracted using a blood genome column rapid 
extraction kit (CWBIO, Taizhou, China) with an addi-
tional isopropanol precipitation step for optimal DNA 
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quality. 200 μl of blood was added to a centrifuge tube, 
and 20 μl of Proteinase K and 200 μl Buffer GL was added 
successively. After incubating at 80℃ for 10 min, 200 μl 
isopropanol and 20 μl magnetic beads were added and 
mixed upside down. The centrifuge tube was fixed on a 
magnetic rack and left to stand for 1 min and the super-
natant was aspirated and discarded. Then, buffer GW1 
was added to the centrifuge tube for repeated washes of 
the magnetic beads. The wash solution was discarded. 
Finally, the eluent was added, mixed, and transferred to a 
new centrifuge tube. The desired DNA solution was col-
lected and stored at −20°C.

The DNA sample quality was described by NanoDrop 
(Thermo Scientific, Willmington, USA), and the DNA 
sample with A260/A280 between 1.7 and 1.9 met the 
experimental requirements.

Detection of target genotype
Specific site amplification primers were designed accord-
ing to the target site sequence, and the polymorphisms 
of FAAH and NR3C1 genes were analyzed by the dide-
oxy terminal termination method (Sanger method). PCR 
amplification reaction system included: PCR master mix 
(Takara, Shiga, Japan) 25 μl, Forward Primer 1 μl, Reverse 
Primer 1 μl, template 1 μl, and  ddH2O 22 μl. PCR reac-
tion procedure was: pre-denaturation at 94℃ for 5 min; 
28 circles of denaturation at 94℃ for 0.5 min, anneal-
ing at 58℃ for 0.5 min, extension at 72℃ for 1 min; and 
finally, 72°C extended for another 10 min. The primers of 
rs41423247 and rs324420 are listed in Table 1. The speci-
ficity of primers was verified by showing a single band of 
the correct amplified fragment size via agarose gel elec-
trophoresis of the PCR products. All reagents, except for 
the template DNA, were prepared in an isolated pre-PCR 
room to prevent contamination. The PCR production 
was purified and put on the 3730 xl sequencer (Applied 
Biosystems, Foster City, USA) was used for sequencing. 
The Sequencing results will be analyzed by the DNA 
Chromas Analysis software (Technelysium, South Bris-
bane, Queensland).

Statistical analysis
SPSS 25.0 statistical software was applied to the study 
data for statistical processing (testing level P < 0.05 
was considered statistically significant). Measurement 

data with normal distribution were presented as 
mean ± standard deviation (SD). The Categorical vari-
ables were expressed as number or percentage, and the 
χ2 test was used for comparison between groups, and the 
genetic specific risk was estimated as odds ratios (ORs) 
with associated 95% confidence intervals (CIs). Hardy–
Weinberg balance was used to verify the population 
representation of target genes. And HWE deviations in 
control cohorts are frequently caused by a relatively small 
sample size, and expanding the sample size is desirable.

Results
General clinicopathological characteristics
A total of 105 patients were included in the analysis, 
including 50 males and 55 females, aged (9.54 ± 3.04) 
years (Table  2). There were 13 patients with epilepsy 
history, accounting for 12.4% (Table  2). There were 59 
patients with good drug reactions, accounting for 56.2, 
and 46 patients with poor drug reactions, accounting for 
43.8% (Table 2).

Polymorphism detection results
Sequencing of target gene loci in 105 epilepsy patients 
showed that 8 cases of NR3C1 rs41423247 were wild 
type (CC) and 97 cases had gene mutations, including 
32 cases of heterozygous mutations (CG) and pure 65 
cases of combined mutation (GG). The NR3C1 646 C > G 

Table 1 Primer sequences of FAAH and NR3C1

SNP single nucleotide polymorphism

SNP ID Gene Symbol Nucleotide Change 
Location

Forward Primer Reverse Primer

rs41423247 NR3C1 646 C > G 5′TGC TGC CTT ATT TGT AAA TTCGT 3′ 5′ AAG CTT AAC AAT TTT GGC CATC 3′
rs324420 FAAH 385 C > A 5′ TGT TGC TGG TTA CCC CTC TC3′ 5′ CCC AAA ATG ACC CAA GAT GC3′

Table 2 Clinical Characteristics of Patients with Epilepsy

Items Patients with 
Epilepsy 
(N = 105)

Age (years) 9.54 ± 3.04

Gender

 Male (N, %) 50, 47.6

 Female (N, %) 55, 52.4

Family History of Epilepsy

 Yes (N, %) 13, 12.4

 No (N, %) 92, 87.6

Drug Response

 Good (N, %) 59, 56.2

 Poor (N, %) 46, 43.8
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genotype frequency was tested to be consistent with 
Hard-Weinberg equilibrium (P = 0.10, Table 3).

In all patients with epilepsy, 81 cases of FAAH rs324420 
were wild type (CC), and 24 cases had gene mutations, 
including 20 cases of heterozygous mutations (CA) and 4 
cases of homozygous mutations (AA). The rs324420 site 
complies with Hardy–Weinberg equilibrium (P = 0.07, 
Table 3).

Correlation between target SNP and drug response
There was a statistically significant difference in the 
comparison of rs41423247 genotype frequencies 
between the good response and poor response groups 

(P < 0.001, Table  4). The frequency of the C allele was 
significantly higher in the good response group than in 
the poor response group (P < 0.001, Table  4). Signifi-
cantly, χ2 analysis found that GG genotypes (OR = 6.023, 
95% CI = 1.022–35.509, P = 0.047, Table  4) and C allele 
(OR = 4.822, 95% CI = 1.363–17.064, P = 0.015, Table  4) 
were associated with increased adverse drug reactions. 
The CG genotype increased the risk of poor response by 
over six times and the G allele elevated the risk of poor 
response by almost fivefold (Table 4).

No difference in rs324420 genotypes and alleles was 
found between the good response and poor response 
groups and no correlations were observed between this 
polymorphism and drug response (All P > 0.05, Table 4).

Inheritance genotype models of different drug responses
The genotype model of inheritance of rs41423247 and 
rs324420 was exhibited in Table 5. In genetic model anal-
ysis, the dominant model of rs41423247 showed a dif-
ference between the good response group and the poor 
response group (P < 0.001, Table 5) and it was related to 
the good drug response (OR = 8.253, 95% CI = 2.784–
24.467, P < 0.001, Table  5). The recessive model of 
rs41423247 together with the dominant and recessive 
models of rs324420 represented no correlation with the 
drug response of ASMs (All P > 0.05, Table 5).

Relationship between polymorphisms and the risk of liver 
dysfunction
Of the genotyped patients, 39 cases experienced hepato-
toxicity while 66 did not. Individuals with the variant of 
the rs41423247 and rs324420 represented no statistical 
significance of LFT impairment (All P > 0.05, Table 6).

Table 3 Distribution of rs41423247 and rs324420 in Patients 
with Epilepsy

HWE Hardy–Weinberg equilibrium, SNP single nucleotide polymorphism

SNP ID N, %

rs41423247

 CC 8, 7.6

 CG 32, 30.5

 GG 65, 61.9

 C 44, 21.0

 G 166, 79.0

 PHWE 0.10

rs324420

 AA 4, 3.8

 AC 20, 19.1

 CC 81, 77.1

 A 28, 13.3

 C 182, 86.7

 PHWE 0.07

Table 4 Distribution of rs41423247 and rs324420 in Patients with Epilepsy

CI confidence interval, OR odds ratio, SNP single nucleotide polymorphism

SNP ID Good response
(N = 59)

Poor response
(N = 46)

χ2 P value OR (95%CI) P value

rs41423247

 CC 6, 10.2 2, 4.3 / / 1.00

 CG 27, 45.8 5, 10.9 / / 0.721 (0.101–5.122) 0.744

 GG 26, 44.1 39, 84.8 18.397  < 0.001 6.023 (1.022–35.509) 0.047

 C 36, 30.5 8, 8.7 / / 1.00

 G 82, 69.5 84, 91.3 7.425 0.008 4.822 (1.363–17.064) 0.015

rs324420

 AA 3, 5.1 1, 2.2 / / 1.00

 AC 10, 16.9 10, 21.7 / / 0.581 (0.046–7.263) 0.674

 CC 46, 78.0 35, 76.1 0.898 0.638 1.655 (0.536–5.114) 0.381

 A 12, 10.2 16, 17.4 / / 1.00

 C 106, 89.8 76, 82.6 1.167 0.280 1.902 (0.503–7.189) 0.343
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Discussion
This study investigated the relationship between drug 
response to epilepsy treatment and the rs41423247 poly-
morphism on the NR3C1 gene or the SNP rs324420 on 
the FAAH gene. The genotypes and allele frequencies 
of the rs41423247 locus on the NR3C1 gene and the 
rs324420 locus on the FAAH gene were found to be in 
accordance with the Hardy–Weinberg balance in 105 
epileptic patients. Of the 105 patients who completed 
ASM treatment in this study, 59 had a good response 
to the ASMs, and 46 responded negatively. In the good 
response group, the CG genotype frequency, the C allele 
frequency, dominant genotype at the rs41423247 locus 
on the NR3C1 gene were significantly higher than in the 
poor response group. However, there was no significant 
difference in rs324420 polymorphism of the FAAH gene 
between the two groups. Rs41423247 polymorphism on 
the NR3C1 gene might be associated with drug response 
to ASM treatment, and antiepileptic efficacy was better 
in patients with the C allele and CG genotype. In addi-
tion, the rs41423247 polymorphism on the NR3C1 gene 
and the rs324420 on the FAAH gene were not associated 

with liver injury after epilepsy drug therapy. The findings 
indicated that the liver function of epilepsy cases after 
drug therapy might not be influenced by different geno-
types of rs41423247 and rs324420 polymorphisms. How-
ever, other factors, such as medication type and duration 
of treatment, may be confounding factors that were not 
considered in the present study, which should be verified 
in future studies.

Epilepsy is a chronic disease caused by abnormal dis-
charges of neurons in the brain. Patients may experience 
sudden loss of consciousness, foaming at the mouth, con-
vulsions, muscle stiffness, or tremors during an attack 
[18]. The causes of epilepsy are varied, including genetic 
factors, brain infections, traumatic brain injuries, brain 
tumors, and so on [19]. Non-pharmacological treat-
ments such as epilepsy surgery, neuromodulation, and 
ketogenic diets have made great strides, but pharmaco-
logical treatments are still the mainstay [20]. Antiepilep-
tic drugs can control seizures by modulating neuronal 
excitability and inhibiting neuronal over-discharge [21]. 
Phenobarbital is the oldest antiepileptic drug still in wide 
clinical use. These drugs successfully suppress seizures 

Table 5 Distribution of genetic model of rs41423247 and rs324420 in Patients with Epilepsy

OR odds ratio, SNP single nucleotide polymorphism

Model Genotype Good response
(N = 59)

Poor response
(N = 46)

χ2 P value OR (95%CI) P value

rs41423247

Dominant CC-CG 33, 55.9 7, 15.2 / / 1.00

GG 26, 44.1 39, 84.8 18.169  < 0.001 8.253 (2.784–24.467)  < 0.001

Recessive CC 6, 10.2 2, 4.3 / / 1.00

CG-GG 53, 89.8 44, 95.7 1.245 0.461 1.826 (0.280–11.921) 0.529

rs324420

Dominant AA-AC 13, 22.0 11, 23.9 / / 1.00

CC 46, 78.0 35, 76.1 0.052 0.820 1.527 (0.507–4.605) 0.452

Recessive AA 3, 5.1 1, 2.2 / / 1.00

AC-CC 56, 94.9 45, 97.8 0.598 0.630 0.333 (0.023–4.717) 0.416

Table 6 Distribution of rs41423247 and rs324420 in patients with epilepsy

CI confidence interval, LFT liver function test, OR odds ratio, SNP single nucleotide polymorphism

SNP ID No LFT disturbance
(N = 66)

LFT disturbance
(N = 39)

χ2 P value OR (95%CI) P value

rs41423247

 CC 3, 4.5 5, 12.8 / / 1.00

 CG 19, 28.8 13, 33.3 / / 3.950 (0.832–18.750) 0.084

 GG 44, 66.7 21, 53.8 3.020 0.221 1.418 (0.572–33.519) 0.451

rs324420

 AA 3, 4.5 1, 2.6 / / 1.00

 AC 9, 13.6 12, 30.8 / / 0.886 (0.085–9.223) 0.920

 CC 54, 81.8 26, 66.7 4.589 0.101 2.990 (1.099–8.131) 0.032
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in the majority of patients. However, in approximately 
20–40% of patients, epilepsy is drug resistant [22].

The therapeutic response to ASMs varies significantly 
in different individuals, and blood concentrations at con-
ventional doses can exceed the range of effective thera-
peutic concentrations, leading to therapeutic failure, 
reduced tolerance, and adverse effects. Genetic polymor-
phisms are one of the main reasons for these differences. 
Therefore, this article focused on the polymorphism in 
the drug response of treatment in epilepsy in order to 
explore the mechanism of drug response in ASM, so as 
to assist personalized treatment strategies. Many genetic 
polymorphisms play a role in the pathogenesis and treat-
ment of epilepsy, e.g., SCN1A ABCG2, SCN1A, CYP3A5, 
and SCN2A [23–25]. The rs211037 polymorphism on the 
GABRG2 gene is associated with valproic acid-induced 
adverse drug reactions, and the CC genotype was asso-
ciated with the absence of seizures after treatment [26]. 
The rs2556375 of BCL11A increases the seizure suscepti-
bility and risk of drug resistance [27]. The SNP of NR3C1 
is correlated with difficult-to-treat rhinosinusitis, glu-
cose metabolism type 2 diabetes, and IgA nephropathies 
[28–30]. Notably, NR3C1 rs41423247 polymorphism 
is related to functional seizures of Iranian [12]. In our 
study, we found a correlation between NR3C1 and drug 
response to ASM treatment in Chinese pediatric epilepsy 
patients, mainly in the form of CG genotype, and C allele 
is associated with a good response to the drug, suggesting 
that the NR3C1 rs41423247 polymorphism may affect 
the therapeutic effect of ASM in epilepsy patients. The 
role of glucocorticoid receptors in the nervous system 
may influence epileptic drug response. Glucocorticoids 
can regulate the release of neurotransmitters, neuronal 
excitability and synaptic plasticity. The functional status 
of the glucocorticoid receptor encoded by the NR3C1 
gene may affect the regulatory effect of glucocorticoids 
on the nervous system, and thus affect the efficacy of epi-
lepsy drugs. In addition, the polymorphism of NR3C1 
gene may affect the metabolism and transport of epilepsy 
drugs. Different NR3C1 gene polymorphisms may lead to 
changes in the structure and function of glucocorticoid 
receptors, thereby affecting drug metabolism and trans-
port. Some studies have suggested that polymorphisms 
in the NR3C1 gene may indirectly affect the metabolism 
and transport of epilepsy drugs by affecting the function 
of the hypothalamic–pituitary–adrenal axis (HPA) [31]. 
However, the mechanism should be verified in future 
studies. In the clinical treatment of patients with epilepsy, 
understanding the genotype of the NR3C1 rs41423247 
site can help doctors develop a more personalized treat-
ment plan. For carriers of the CG genotype, doctors may 
be more inclined to choose conventional antiepileptic 
drugs during initial treatment. Because these patients 

may have better anti-epileptic efficacy according to the 
conclusion of the study, they can avoid overuse of some 
powerful drugs that may have more side effects. For 
carriers of the CC gene, doctors can consider adjusting 
treatment options, such as changing drug types, adjust-
ing drug dosages, or combining other drugs. In addi-
tion, accumulating data supports an autoimmune basis 
in patients with antiepileptic drug-resistant seizures 
[32, 33]. NR3C1 has been reported to serve as potential 
immune-related biomarkers [34]. And NR3C1 is linked 
with a deregulated hypothalamus–pituitary–adrenal 
(HPA) axis and psychopathology [35]. Therefore, the role 
of NR3C1-mediated immune response in epilepsy drug 
response is worth exploring in depth. Besides, there is a 
close correlation between probiotic-mediated immunity 
and drug resistance in epileptic patients [36]. Probiotics 
may have a positive impact on drug resistance in patients 
with epilepsy by regulating the immune system, enhanc-
ing the intestinal barrier, regulating intestinal microbiota, 
and other mechanisms [37]. In the clinical treatment of 
epilepsy patients, probiotics supplement therapy has 
important research significance.

FAAH rs324420 is widely researched in several diseases 
or physiological processes, such as motor performance, 
memory fading, and susceptibility to methamphetamine 
dependence [38–40]. In the Iranian population, FAAH 
rs324420 genotype and allele distribution were shown 
to be associated with generalized epilepsy and not with 
focal epilepsy [15]. In our study, the FAAH rs324420 
polymorphism did not correlate with drug response after 
ASM treatment in patients with epilepsy These results 
suggest that polymorphisms in FAAH do not correlate 
with drug response to ASM therapy for epilepsy. How-
ever, the sample size of this study is relatively small, and 
the comparison of polycentric large samples of homog-
enous populations is lacking. Although relatively few 
direct studies have been conducted on the role of FAAH 
in patients with different types of epilepsy, its role in epi-
lepsy warrants further investigation because it is a key 
enzyme in the endocannabinoid system [41]. And the 
endocannabinoid system plays an important role in neu-
ropsychiatric diseases [42]. The study showed that FAAH 
polymorphism is not associated with epilepsy resistance, 
which may mean that FAAH gene polymorphism is not 
involved in these key drug action links in the mechanism 
of epilepsy resistance. On the other hand, it is also pos-
sible that our study sample is small and there is a certain 
result bias. Therefore, in the future, large-scale clinical 
studies can be conducted to collect NR3C1 and FAAH 
gene information and epilepsy drug treatment response 
data, and analyze the relationship between NR3C1 and 
FAAH gene polymorphisms and epilepsy drug response. 
In addition, the relationship of NR3C1 and FAAH with 
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epileptic drug response can be comprehensively evalu-
ated in combination with other biological indicators or 
genome interactions. Then explore the personalized epi-
lepsy treatment strategy based on NR3C1 and FAAH. 
In addition, other external factors such as diet and envi-
ronmental exposures may influence genetic expression 
and drug metabolism, potentially interacting with the 
polymorphisms studied. But they were not included in 
the current study. Thus, future studies should take into 
account external factors and observe the relationship 
between NR3C1 and FAAH genetic polymorphisms and 
epilepsy drug response after controlling for these factors.

Interestingly, the present results also demonstrated that 
both NR3C1 and FAAH polymorphisms showed no sig-
nificant correlation with liver injury associated with ASM 
treatment. Antiepileptic drugs are mainly metabolized by 
cytochrome P450 enzyme series (CYP) or glucosylation 
reaction. The polymorphism of NR3C1 and FAAH genes 
may not affect the metabolic process of antiepileptic 
drugs in the liver, and thus have nothing to do with liver 
injury. Some current studies have found that probiotics 
can improve liver function in patients with epilepsy [43]. 
This may be because probiotics improve gut microbiota 
outcomes and reduce the production of inflammatory 
mediators, thereby reducing the burden of inflammation 
on the liver. Signaling molecules produced by probiotics 
may affect NR3C1 gene expression [44]. This regulatory 
effect of probiotics may vary in individuals with differ-
ent polymorphisms of the NR3C1 gene. FAAH gene 
polymorphism may also affect the metabolism of probi-
otics. Different FAAH genotypes may lead to differences 
in the endocannabinoid system, which in turn affect the 
physiological function of the gut. In addition, NR3C1 
gene polymorphism may affect the body’s ability to reg-
ulate inflammation, and thus affect liver function [45]. 
Therefore, inflammatory responses may mask the poten-
tial effects of genetic polymorphisms on liver function. 
Therefore, exploring the role of systemic inflammation 
in the relationship between gene polymorphism and liver 
function is helpful to understand the influencing factors 
of liver function more comprehensively.

Conclusion
In consequence, NR3C1 rs41423247 polymorphism may 
be related to the response to anti-epileptic drugs, and 
G allele and CG genotype carriers have better anti-epi-
leptic efficacy. FAAH rs324420 polymorphism was not 
associated with drug response to epilepsy treatment. At 
the same time, NR3C1 rs41423247 and FAAH rs324420 
polymorphisms were not associated with liver injury in 
epilepsy treatment. These findings provide new ideas and 
methods for personalized treatment of epilepsy.
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