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Introduction
Allergic purpura, also known as IgA vasculitis, is an 
immune complex vasculitis primarily affecting small ves-
sels [1] and leads to palpable purpura, arthralgia/arthritis, 
bowel angina, and haematuria/proteinuria [2, 3]. Allergic 
purpura is the most common childhood systemic vas-
culitis, with an estimated incidence of 20.4 per 100,000 
children [2]. The major morbidity of allergic purpura is 
kidney involvement, known as IgA vasculitis nephritis 
(IgAV-N), which can develop within 4–12 weeks after 
disease onset [4]. Early detection of allergic purpura is 
thus very important.
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Abstract
Background  Increasing evidence indicates a substantial correlation between the immune cells and the risk of 
allergic purpura. We utilized Mendelian randomization (MR) to investigate causal effect of immune cell on allergic 
purpura.

Methods  Genetic instrumental variables for immune cells were sourced from an extensive genome-wide association 
study (GWAS) comprising 3757 participants. Summary statistics of allergic purpura, involving 470 cases and 216,099 
controls, were obtained from FinnGen. The primary analysis employed the inverse-variance weighted (IVW) method. 
Rigorous sensitivity analyses including MR-Egger, weighted median and MR-PRESSO were conducted to ensure the 
reliability of the causal estimate.

Results  We identified two immunophenotypes associated with an increased risk of allergic purpura: HLA-DR on 
CD14 + CD16- monocyte (OR: 1.2379; 95% CI: 1.0612–1.4440; P = 0.0066) and CD11b on basophil (OR: 1.2973; 95% CI: 
1.0905–1.5433; P = 0.0033). The sensitivity analyses consistently yielded similar results for these immunophenotypes.

Conclusions  Our analyses confirmed a potential causal effect of HLA-DR on CD14 + CD16- monocyte, as well as 
CD11b on basophils, in relation to the risk of allergic purpura. Further studies are necessary to clarify the mechanisms 
by which these immunophenotypes influence the development of allergic purpura.
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Currently, the pathogenic mechanisms of IgA vasculi-
tis (IgAV) are not fully understood. Multiple studies have 
indicated that genetic factors, infections, and immune 
dysregulation play significant roles in disease progres-
sion. For instance, there is often a history of respiratory 
infections or vaccinations prior to the onset of IgAV [1, 
5]. Certain human leukocyte antigen (HLA) alleles, such 
as HLA-B35 and HLA-DRB1*01, are associated with 
susceptibility to IgAV [6, 7]. Additionally, increasing 
research highlights the critical role of immune dysregula-
tion in the disease course of IgAV. The pathophysiology 
of allergic purpura likely involves dysregulation of the 
immune system initiating an inflammatory response and 
injury. Immune complexes produced by B cells deposit in 
the glomeruli of the kidney [8, 9], while monocytes and T 
cells accumulate, leading to damage [10]. Previous stud-
ies have shown that the activation levels of CTL and NK 
cells are increased in allergic purpura [11]. Additionally, 
the frequency of Tr1 cells in peripheral blood is reduced 
in IgAV patients, which may be associated with increased 
EGR2 expression [12]. Neutrophils are also believed to be 
involved in the pathogenesis of IgAV [13].

Renal involvement is an important factor in determin-
ing the prognosis of IgAV. Up to 20-80% of children with 
IgAV exhibit symptoms of nephritis, and 1–7% of chil-
dren diagnosed with IgA vasculitis nephritis (IgAV-N) 
are at risk of progressing to renal failure or end-stage 
renal disease [14]. The excessive differentiation of Th2 
cells, Th17 cells, and Tfh cells may play a role in the onset 
and progression of IgAV-N [15]. This suggests that the 
immune system’s response, characterized by the overpro-
duction of these specific cell types, could be a contrib-
uting factor to pathogenesis of IgAV-N. Therefore, the 
relationship between immune cells and IgAV is highly 
complex and closely intertwined, and it is recommended 
to investigate causal effect of immune cell on IgAV.

However, past observational studies on the relationship 
between immune cells and allergic purpura have been 
affected by confounding factors. Mendelian randomiza-
tion (MR) has emerged as a novel method to explore the 
causal relationship between immune cells and allergic 
purpura [16]. MR utilizes genetic variants as instrumen-
tal variables, enabling the evaluation of the relationship 
between exposure and outcome while mitigating con-
founding factors [17]. Thus employing a two-sample 
Mendelian randomization (MR) analysis approach with 
data from genome-wide association studies (GWAS) 
overcomes the limitations of observational studies and 
enhances the study’s methodological rigor. This research 
not only gives us a deeper comprehension of the complex 
interplay between immune cells and allergic purpura, but 
also paves the way for targeted interventions and thera-
peutic strategies.

Methods
We used two-sample MR to investigate causal association 
between immune phenotypes and allergic purpura. Only 
publicly available GWAS summary data were included in 
our study. Therefore, no additional informed consent or 
ethical review was required for our use of these data. We 
reported our study based on STROBE-MR guideline and 
STREGA guideline [18, 19].

Genome-wide association study (GWAS) data sources for 
allergic purpura
The genetic summary statistics underpinning research on 
allergic purpura originated from a genome-wide associa-
tion study (GWAS) involving 470 cases and 216,099 con-
trols with European ancestry from FinnGen R5 release 
[20]. The FinnGen project is an ongoing project and R5 
dataset was released to public in May 11th 2021, and we 
obtained the data in October 5th 2023 [21]. Cases were 
selected on the basis of International Classification of 
Diseases, 10th version (ICD10) ICD-10: D690, ICD-8: 
2870. DNA specimens of FinnGen were collected from 
a consortium of participating Finnish biobanks. The 
extraction process involved either whole blood or buffy 
coat, adhering to each biobank’s standardized protocols 
and then dispatched to the centralized logistics facil-
ity at the the Biobank of the Finnish Institute for Health 
and Welfare (THL Biobank). THL Biobank laboratory 
meticulously aliquoted and normalized the samples into 
96-well plates. Subsequently, these prepared plates were 
devivered to the Affymetrix Research Services Labo-
ratory at Thermo Fisher Scientific for further analysis. 
FinnGen individuals were genotyped with Illumina and 
Affymetrix chip arrays and imputed using the popula-
tion-specific SISu v3 imputation reference panel of 3,775 
whole genomes [20]. Summary data were adjusted for 
confounding factors like age, sex, technical covariates, 
and genetic principal components.

SNPs associated with immune phenotypes were 
extracted from with GWAS summary statistics conveyed 
by Orru V et al. [22]. GWAS summary data of immuno-
phenotypes was released to GWAS catalog in Sep 14th 
2020 and we obtained the data in Oct 5th 2023 [22]. 
The original study included 3757 European individuals. 
Peripheral blood was collected in heparin tube. Cell phe-
notyping was conducted at the same recruitment center, 
using erythrocyte-lysed fresh samples, within two hours 
following blood collection. This comprehensive study 
profiled 731 immunophenotypes by flow cytometry, cov-
ering a spectrum of features like absolute cell counts by 
BD TruCount absolute counting tubes, median fluores-
cence intensities calculating by the Spearman coefficient, 
morphological parameters assessing by light scatter-
ing measured using two optical detectors, and relative 
cell counts which are ratios between cell levels. Samples 
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were stained with 7 antibody panels, including TBNK 
panel, Treg panel, maturation stages of T-cell panel, DC 
panel, B-cell panel, monocyte panel, myeloid cell panel 
[22]. The genotyping process incorporated approximately 
22 million SNPs, utilizing four different Illumina arrays: 
OmniExpress, ImmunoChip, Cardio-MetaboChip, and 
ExomeChip and imputation with a Sardinian sequence-
based reference panel. Data was adjusted for covariates 
like sex, age, and age squared. Figure  1 illustrates the 
design of our study for investigating potential causal links 
between immune cells and allergic purpura. Notably, the 
use of publicly available summary data obviated the need 
for additional ethical approvals or participant consents. 
Details of data source were shown in Table 1.

Instrumental variables (IVs)
Mendelian Randomization (MR) relies on three fun-
damental assumptions to ensure the validity of causal 
inference. Firstly, the genetic variant used as an instru-
mental variable (IV) should be strongly associated with 
the exposure of interest. Secondly, genetic variants were 
not associated with confounders. Lastly, the instrumen-
tal variables influences the outcome solely through its 
impact on the exposure. These assumptions constitute 
the bedrock of MR analysis, employing genetic variants 
as tools to deduce causal connections between exposures 
and outcomes, as illustrated in Fig. 2 [19].

The selection of instrumental variables (IVs) for inves-
tigating causal association between immune pheno-
types and allergic purpura follows a rigorous process to 
ensure robust results. When extracting IVs associated 
with immune phenotypes, a locus-wide p-value thresh-
old of p < 1.0 × 10− 5 is applied. Independence among IVs 
is maintained through LD threshold (R2 < 0.001) and a 
clumping distance of 10,000  kb, utilizing the “TwoSam-
pleMR” package with 1000 Genomes EUR data. Instru-
ment strength of IV is assessed using F-statistics(β2/se2), 
with values exceeding 10 indicate minimal weak instru-
mental bias [23]. SNPs featuring  A/T or  G/C alleles, 
termed palindromic SNPs, introduce ambiguity into the 
identity of the effect allele in the exposure and outcome 
GWASs. To maintain reference strand integrity, palin-
dromic SNPs with effect allele frequencies between 0.3 
and 0.7 are excluded. When a particular SNP is absent 
from the outcome dataset, linkage disequilibrium proxy 
SNPs can be used. We set the threshold of r2 at 0.8 to 
ensure that the proxy SNP and target SNP have a strong 
correlation so that the proxy SNP can replace the target 
SNP as an IV [24].

Statistical analysis
In investigating the causal connection between immune 
cells and allergic purpura, we employed several methods 
including inverse variance weighted (IVW), MR-Egger 

regression, and weighted median method. IVW method 
is the main analysis of our study, which assumes the 
absence of horizontal pleiotropy [25]. The random-
effect IVW method, utilizing a meta-analysis approach, 
combines Wald ratio from each single nucleotide poly-
morphism (SNP) to generate an overall causal effect 
estimate for the impact of immune cells on allergic pur-
pura adjusting heterogeneity among SNPs. The weighted 
median method offers a reliable estimate in MR analyses, 
even when up to 50% of the instrumental variables used 
are invalid [26].

Sensitivity analysis can make sure the robustness of 
causal association between exposures and outcomes. 
MR-Egger regression and MR-PRESSO were used to 
evaluate potential horizontal pleiotropy. MR-Egger is 
a method developed for two-sample MR settings that 
combines Wald ratio (or ratio estimates) together into 
a meta-regression (with an intercept and slope param-
eter) to estimate the causal effect adjusted for any direc-
tional pleiotropy [27]. MR-PRESSO is an extension to 
the inverse variance weighted (IVW) method, which 
attempts to perform the same form of outlier removal 
as in the generalized summary MR (GSMR) method and 
Radial MR [28]. If the p-value of the MR-Egger intercept 
was below 0.05 or p-value of the MR-PRESSO global test 
was less than 0.05, it implied the existence of horizontal 
pleiotropy in the SNPs [27, 28]. Assessment of hetero-
geneity among SNPs was conducted using Cochran’s Q 
test [29]. The TwoSampleMR package (version 0.5.7) in R 
(version 4.3.0) was the analysis tool of choice.

Results
Main results of the immune cell traits with the risk of 
allergic purpura
F-statistics, ranging from 19.55 to 2381.77 were com-
puted for 731 immunophenotypes, all exceeding 10, 
indicating minimal weak instrument bias. Detailed 
information on SNPs for each trait is available in Sup-
plementary Table (1). MR results for all traits and their 
association with allergic purpura risk are outlined in 
Supplementary Table 3, revealing two traits with sug-
gestive associations (p < 0.01) using the IVW method, as 
depicted in Fig. 3. Instrumental variables for these traits 
are provided in Supplementary Tables 1 and 2. We ana-
lyzed causal effect of 731 immunophenotypes on allergic 
purpura. While 729 immunophenotypes exhibited no 
significant correlation with allergic purpura, we found 
that HLA-DR on CD14 + CD16- monocyte in monocyte 
panel and CD11b on basophil in myeloid cell panel had 
significant effect on risk of developing allergic purpura, 
respectively. None of the immunophenotypes in TBNK 
panel, Treg panel, maturation stages of T cells panel, 
DC panel showed significant effect on developing aller-
gic purpura according to results of IVW method. Results 
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Fig. 1  Mendelian randomization flowchart for investigating causal relationship between immune cells and allergic purpura
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were illustrated in Fig. 3 and detailed in Supplementary 
Table 4.

Using the IVW method, higher HLA-DR on 
CD14 + CD16- monocyte was revealed to lead to a higher 
risk of getting allergic purpura using the IVW method 
(OR: 1.2379; 95% CI: 1.0612–1.4440; P = 0.0066), and 
weighted median analyses showed similar result (OR: 
1.3511; 95% CI: 1.0939–1.6687; P = 0.0052). The results 
of the MR Egger (OR: 1.2863; 95% CI: 0.9640–1.7165; 
P = 0.1026) and weighted median (OR: 1.3511; 95% CI: 
1.0939–1.6687; P = 0.0052) analyses are consistent with 
IVW. Both MR-PRESSO(P = 0.4780) and MR-Egger 
intercept (P = 0.7594) analyses were > 0.05, detected no 
outliers or directional pleiotropic effects. Meanwhile, 
CD11b on basophil is suggested to be one of the risks of 
developing allergic purpura using the IVW method (OR: 

1.2973; 95% CI: 1.0905–1.5433; P = 0.0033). The results 
of the weighted median (OR:1.1712; 95% CI: 0.9220–
1.4877; P = 0.1954) analyses are consistent with IVW. 
Similarly, both MR-PRESSO (P = 0.408) and MR-Egger 
intercept(P = 0.0691) analyses were > 0.05, detected no 
outliers or directional pleiotropic effects. The p-value the 
Cochran’s Q of both HLA-DR on CD14 + CD16- mono-
cyte (P = 0.4770) and CD11b on basophil(P = 0.3455) were 
both greater than 0.05, indicating no significant hetero-
geneity among SNPs associated with these two immuno-
phenotypes. Result of MR-Egger intercept and Cochran’s 
Q of all immunophenotype are presented in supplemen-
tary Tables 5 and 6.

Table 1  Details of the datasets used in the analyses
Phenotype Sample size Population Data source PMID
Immune phenotypes 3757 European ​h​t​t​p​​s​:​/​​/​w​w​w​​.​e​​b​i​.​​a​c​.​​u​k​/​g​​w​a​​s​/​d​​o​w​n​​l​o​a​d​​s​/​​s​u​m​m​a​r​y​-​s​t​a​t​i​s​t​i​c​s 32,929,287
Allergic purpura 216,569 European ​h​t​t​p​s​:​​​/​​/​g​w​a​​s​​.​m​r​​c​i​e​​​u​.​​a​​c​.​​​u​k​/​​d​a​t​​a​s​​e​​t​s​​/​f​​i​​​n​n​-​​​b​-​D​​3​_​​A​L​L​E​R​G​P​U​R​P​U​R​A​/ 36,653,562

Fig. 3  Associations of genetically determined immune cell traits with allergic purpura risk

 

Fig. 2  Assumptions in MR studies: a brief overview

 

https://www.ebi.ac.uk/gwas/downloads/summary-statistics
https://gwas.mrcieu.ac.uk/datasets/finn-b-D3_ALLERGPURPURA/
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Discussion
Based on large publicly available genetic data, we 
explored causal associations between 731 immune cell 
traits and allergic purpura. In this study, two immuno-
phenotypes, HLA-DR on CD14 + CD16- monocyte and 
CD11b on basophil, was found to have causal effects on 
allergic purpura.

Our study found that the risk of allergic purpura 
increased with an increase in HLA-DR on CD14 + CD16- 
monocyte. Previous studies have shown that the number 
of monocytes in the circulating blood of patients with 
allergic purpura is significantly higher than that of the 
control group without the disease [30]. This may be due 
to the important role played by monocytes in promoting 
inflammation and anti-inflammatory processes at inflam-
matory sites [31].

CD14 + CD16- was referred to as ‘‘classical’’ mono-
cytes, making up 80–90% of the monocyte pool [31]. 
Classical monocytes have pro-inflammatory activities, 
antigen-presentation, tissue remodeling and anti-inflam-
matory abilities. Human monocytes can be identified 
by their HLA-DR expression [32]. HLA-DR is a class II 
MHC molecule that is involved in antigen presentation 
by monocytes. When stimulated with staphylococcal 
enterotoxin B, CD14 + CD16- monocytes show increased 
expression of HLA-DR, leading to enhanced ability to 
activate the proliferation of CD4 + T cell [33]. It has been 
reported that Th2 cells, Th17 cells, and Tfh cells may play 
a role in the onset and progression of IgAV-N [15]. Previ-
ous research has also pointed out that HLA class II genes 
have been implicated in susceptibility to IgAV, with spe-
cial emphasis on HLA-DRB1 alleles [34, 35].

The increase of CD11b on basophil also leads to an 
increased risk of allergic purpura. The basophil is well-
known for its role in allergic inflammation and it also has 
immunoregulatory functions in both innate and adap-
tive immunity. Previous studies have shown that baso-
phils can be found in perivascular areas in patients with 
allergic purpura, and compared to the recruitment of 
eosinophils, there is a predominance of basophils [36].
CD11b belongs to the integrin family β2 group, and when 
combined with CD18, it forms CR3, which is involved in 
immune cell adhesion, inflammation, and phagocytosis. 
Crosslinking of CD11b with other adhesion molecules 
can promote activation of basophil which will participate 
in inflammatory reactions [37]. Increased level of CD11b 
may indicate that basophils are more easily activated, 
leading to the higher occurrence of allergic purpura.

This study conducted a two-sample Mendelian ran-
domization (MR) analysis based on published large-scale 
GWAS cohorts, with a sample size of 216,569 individu-
als, ensuring high statistical efficiency. The conclusions 
drawn in this study are reliable as they are based on 
genetic instrumental variables and employ various causal 

inference methods using MR. These results are not influ-
enced by horizontal pleiotropy or other factors. The 
research findings innovatively demonstrate that elevated 
levels of HLA-DR on CD14 + CD16- monocytes and 
CD11b on basophils are associated with the occurrence 
of allergic purpura. However, there are limitations to 
consider in this study. First, a predominant proportion of 
participants in the GWAS were European descent so the 
generalizability of the study’s outcomes to other racial or 
ethnic groups may be compromised. Secondly, this study 
didn’t explore the diverse subtypes or specific character-
istics of allergic purpura. Thirdly, our study didn’t include 
expression data of HLA-DR on CD14 + CD16- monocyte 
and CD11b on basophil in allergic purpura patients and 
healthy people. In summary, it can be seen that a call 
for further research is warranted. Future investigations 
should encompass larger and more diverse populations, 
incorporate a consideration of cell function, prioritize 
replication in independent cohorts, and explore asso-
ciations with specific allergic purpura subtypes. Fur-
ther research into the underlying mechanisms should 
be conducted to clarify the pathophysiological path-
ways of immune cells implicated in the onset and renal 
manifestations of IgAV. Addressing these aspects will 
undoubtedly contribute to a more nuanced and enriched 
understanding of the intricate relationship between 
immune cells and allergic purpura.

Conclusions
In conclusion, we have demonstrated the causal effect 
of HLA-DR on CD14 + CD16- monocyte and CD11b on 
basophil and allergic purpura through a comprehensive 
MR analysis, highlighting the complex pattern of interac-
tions between the immune system and allergic purpura.

Furthermore, our research significantly reduced the 
impact of unavoidable confounding factors and other 
factors. It may provide a new avenue for researchers to 
explore the biological mechanisms of IgAV and can lead 
to exploration of earlier intervention and treatment.

These promising findings could provide new targets 
for IgAV treatment, guiding the development of targeted 
therapies and reducing the incidence of IgAV sequelae.
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