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Abstract

Anthracyclines are among the most powerful drugs for the treatment of oncologic diseases both
in childhood and in adulthood. Nevertheless, their major antineoplastic efficacy can be seriously
impaired by collateral toxic cardiac effects causing cardiomyopathy with chronic heart failure that

is refractory to conventional medical therapy.

This article reports

possible subcellular molecular alterations of anthracycline-induced

cardiomyopathy (reactive oxygen species formation, apoptosis, inflammatory signalling, altered
expression of cardiomyocytes specific genes, etc) and indicates some new therapeutic perspectives
resulting from a better understanding of the molecular pathogenetic mechanisms.

Today anthracyclines are among the most powerful drugs
used for the treatment of oncologic diseases both in child-
hood and adulthood. Nevertheless their major antineo-
plastic efficacy can be seriously impaired by collateral
toxic effects causing profound alterations in cardiac mus-
cle. These effects can be associated to acute clinical mani-
festations, occurring within 24 hours from the beginning
of treatment, such as hyperkinetic arrhythmias and/or
reversible heart failure (myocarditis-pericarditis syn-
drome); subacute manifestations, occurring after weeks or
months (up to 30 months), leading rapidly to progressive
heart failure and 60% mortality; chronic manifestations,
occurring 4-20 years after the treatment, with progressive
irreversible cardiac insufficiency [1]. The most interesting
aspects are connected to late chronic cardiotoxicity that is
particularly insidious. It has a long term asymptomatic
course or presents slight electrocardiographic and/or
echocardiographic anomalies that later evolve into
chronic cardiomiopathy, dilated type in adulthood and
restrictive-dilated in childhood, that is refractory to medi-
cal treatment [2]. Another peculiar feature of chronic

anthracycline cardiotoxicity is that it is strictly linked to
drug cumulative dose. Indeed, the incidence of anthracy-
cline - induced cardiomyopathy (AIC) and heart failure
increases from 7% of cases for total doses of 550 mg/m?2/
bs, to 15% for 600 mg/m?2/bs and 30-40% for 700 mg/m?2/
bs [3].

Pathological studies on experimental animal models and
human endomyocardial biopsies have shown that AIC is
characterized by histological alterations consisting in
multiple areas of interstitial fibrosis associated with the
presence of cardiomyocytes with vacuolar degeneration or
compensatory hypertrophy. Necrotic cardiomyocytes
with histiocytic infiltration, and stromal oedema with
myocardial fibers dissociation can also be observed. Elec-
tron microscopy revealed that the damage caused by
anthracyclines to cardiomyocytes appears as loss of myofi-
brils, distention of sarcoplasmic reticulum, mitochondrial
swelling, increased lysosomal number and disorganiza-
tion of nuclear chromatine [4-6].
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In order to explain these alterations, numerous pathoge-
netic mechanisms have been proposed [6], and three
seem to be the most important: free radical release sec-
ondary to the binding of anthracyclines to intracellular
iron, interaction with nuclear and mitochondrial DNA,
and gene activation with biochemical transduction signals
inducing apoptosis [7,8].

Free radicals cardiac toxicity can be caused by direct dam-
age of the mitochondrial respiratory chain with conse-
quent decrease in energy production, due to
phosphorilative processes impairment, and reduction of
cardiomyocytes following the release of pro-apoptotic fac-
tors. Both effects lead to altered systolic function [7] (Fig-
ure 1). Further harmful actions of free radicals are
associated with membrane lipid peroxidation and
cytoskeleton protein oxidation. These events cause the
dysfunction of membrane and sarcotubular ATP-ases sys-
tems with consequent intracellular calcium increase, and
altered sarcomeric motility impairing the relaxing ability
of cardiomyocytes that induces deficient diastolic func-
tion [9] (Figure 1). Initially, the loss of contractile ele-
ments is compensated by the hypertrophy of surviving
cardiomyiocytes, thus masking the alteration of systolic
function. On the other hand, cardiac cells have a low con-
tent of antioxidant systems and can be easily damaged by
oxidative stress.

Furthermore, interferences with nuclear DNA can inhibit
protein synthesis and cardiac tissues growth and down-
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regulate contractile, sarcotubular and cytosolic proteins.
Moreover, these interferences can determine the re-expres-
sion of genes that are active during the embrio-fetal period
when they code the synthesis of both pro-apoptotic fac-
tors and enzymatic and functionally immature muscular
proteins. Conversely, interferences with mitochondrial
DNA mainly affect the mitochondrial respiratory chain
function that can be seriously impaired by the inhibition
of cardiolipin, a phospholipid which plays a crucial role
in the regulation of cardiac energetic processes. Altera-
tions of the subunits of mitochondrial respiratory com-
plexes can also cause the release of cytochrome ¢, which
can determine cardiomyocytes apoptosis by activating
caspases and metalloproteinases enzymatic system.
[10,11] (Figure 2). All these processes involving both
nuclear and mitochondrial DNA may be linked to anthra-
cycline alcoholic metabolites, and their negative effects on
cellular energetic metabolism, protein synthesis and myo-
cardial tissues development can explain the different clin-
ical evolution of AIC in adulthood and in childhood [12].
In adults the loss of cardiomyocytes induced by apoptosis,
together with the inhibition of compensatory hypertro-
phy and with the energetic deficit, can cause ventricular
dilatation resulting from the thinning of ventricular walls
and the reduction of contractile force, leading to the
development of dilated cardiomyopathy. In children the
dilatation of ventricular cavities can be associated with a
restrictive hemodynamic status following reduced cardiac
dimensions caused by the slower development of myocar-
dial mass. This reduces ventricular compliance and thus
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Role of free radicals in the pathogenesis of anthracycline cardiomyopathy.
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Figure 2
Pathogenetic mechanisms of anthracycline cardiomyopathy.
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Figure 3
Different haemodynamic evolution of anthracycline cardiomyopathy in relation to patient's age.
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Factors determining progression of cardiac insufficiency in anthracycline cardiomyopathy.

determines restrictive-dilated cardiomyopathy [13,14]
(Figure 3). The subsequent evolution of these two types of
AIC is characterized by inexorable progressive deteriora-
tion of cardiac function leading to severe and refractory
heart failure with fatal exitus.

At this point, the mechanisms responsible for this nega-
tive evolution of AIC can overlap others that progressivley
exacerbate all dilated chronic cardiomyopathies (regard-
less of their aetiology) and are strictly influenced by the
neuro-hormonal response triggered by the chronic cardiac
contractility deficit. This response activates the adrenergic
and renin-angiotensin-aldosterone system and the release
of catecholamines, angiotensin and aldosterone. Excess of
circulating amines down-regulates cardiac adrenergic
receptors and reduces the inotropic response to adrenergic
signals thus further impairing contractile deficit. Periph-
eral vasoconstriction and hydro-saline retention are
induced respectively by angiotensin and aldosterone, and
increase pre and the post-load thus jeopardizing cardiac
performance and giving rise to a vicious circle with pro-
gressive cardiac dysfunction [15,16] (Figure 4). Moreover,
at the genesis of this dysfunction, besides the above-men-
tioned negative haemodynamic effects, modifications of
the ultrastructure of cardiac muscle induced by the same
adrenergic amines, aldosterone and angiotensin may be
involved. Recent studies on molecular cardiology showed

that these substances can be released inside the cardiac
muscle after "cardiac mechano-receptors stimulation" due
to bio-mechanical stress induced by volume and/or pres-
sure overload secondary to heart failure [17]. This intra-
myocardial neuro-hormonal response is far greater than
that of the circulatory district and, like catecholamines,
angiotensin and aldosterone, includes cardiomyocytes
release of endothelin, cytokines and peptides growth fac-
tors (Figure 5). These molecules, acting in autocrine and
paracrine fashion in the same cardiomyiocytes and in the
surrounding tissues, determine profound modifications
of ultrastructural cardiac architecture with functional
alterations at the level of the finest subcellular mecha-
nisms. These ultrastructural changes constitute the basis
of the so called "myocardial remodelling" a biological
process, peculiar to the natural history of chronic heart
failure, characterized by several cellular and molecular
events consisting of hypertrophic and apoptotic processes
of myocardial cells, mesenchymal fibrotic and inflamma-
tory reactions and of cytoskeleton and cellular matrix
alterations making the myocardium more vulnerable [18]
(Figure 5). Instead of decreasing cardiac work and oxygen
request through the reduction of the afterload, the same
compensatory hypertrophy of myocardial fibres induced
by biomechanical stress seems to further damage cardiac
performance. In remodelling myocardial muscle growth
stimuli also activate biochemical signals that promote

Page 4 of 8

(page number not for citation purposes)



Italian Journal of Pediatrics 2009, 35:37

CHRONIC HAEMODINAMIC OVERLOAD <

http://www.ijponline.net/content/35/1/37

|

Cardiomyocites mechanoreceptors activation

Release of autocrine-paracrine
biochemical mediators

|

.

Signaling pathways
* adrenergic
* angiotensin
aldosterone
endothelin
cytokines
growth factors

» Adverse biological effects
hypertrophy, altered gene expression, apoptosis
hypertrophy, apoptosis, fibrosis

hypertrophy, fibrosis

hypertrophy, altered gene expression

hypertrophy, apoptosis, flogosis
hypertrophy, altered gene expression

.

Myocardial remodelling
» cardiomyocites hypertrophy and apoptosis
cytoskeleton alterations
extracellular matrix alterations
fetal genetic program reactivation

PROGRESSIVE CARDIAC DYSFUNCTION

Figure 5

|

Effects of intramyocardial neuro-hormonal response to biomechanic stress.

myocardiocytes apoptosis leading to pathologic hypertro-
phy with a negative effect on myocardial activity. This
event is different from what normally happens in physio-
logical hypertrophy of subjects doing physical activity, in
whom biochemical signals that stimulate the myocardio-
cytes hypertrophy are associated with signals that pro-
mote their surviving [19] (Figure 6). An important aspect
on myocardial remodelling is, above all, the modification
of heart genetic expression that is characterized by the
reactivation of fetal genetic program under the stimula-
tion of some of the biochemical mediators released by
myocardial fibres (adrenergic amines, endothelin, growth
factors etc). Two events characterize these genetic modifi-
cations: a) re-expression of genes that were particularly
active in fetal heart, such as the gene of the beta-myosin
(molecule with low ATP-ase activity), some proto-onco-
genes that induce apoptosis, such as C-Jun and C-Fos
genes and the genes encoding for the o, subunit of Na-K
ATP-ase that can cause contractile dysfunction and insta-
bility of the membrane potential; b) suppression of genes
that are active in adult heart, such as those regulating the

sarcotubular ATP-ase, B,- adrenergic receptors and the
lipid beta oxidation, with negative consequences on car-
diac diastolic function and on the energetic metabolism.
All these harmful events, connected to the cardiac remod-
elling, cause precarious heart function, and thus explain
the fatal progressive evolution of chronic heart failure
associated to AIC [20].

Prevention is particularly important in children, who,
thanks to modern treatments, can survive leukemia and
other tumoral diseases for several decades. The various
approaches proposed are not always completely effica-
cious and include: cumulative dose under 450 mg/m2bs,
use of anthracycline analogouses (epirubicin, idarubicin,
mitoxantrone), alternative methods of administration
(continuous slow infusion instead of rapid bolus, or lipo-
some encapsulated anthracyclines) and, above all, use of
antioxidants [3,6]. Although classic molecules such as
tocopherol, ascorbic acid and acetylcysteine have dis-
played encouraging results against acute anthracycline
toxicity, they have not demonstrated clear clinical benefits
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Different to growth stimuli in myocardial remodelling.
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Figure 7
Potential therapeutic use of Bl and B2 kinin receptors (BIR, B2ZR) modulators to prevent anthracycline-
induced myocardial damage.
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in chronic cardiomyopathty [6]. More recent studies
reported that probucol, a lipid-lowering drug, that also
exerts an antioxidant effect and promotes the activities of
endogenous antioxidants, was effective in preventing
anthracycline cardiomyopathty and heart failure in ani-
mal experiments, but further clinical trials are required
[6]. To date the most promising agent is dexrarozane, an
iron-chelator capable of preventing the formation of
extremely reactive hydroxyl radicals catalyzed by the
anthracycline-iron complex [21]. Clinical trials conducted
in children have demonstrated that this drug has an effec-
tive cardioprotective action and reduces the cardiac side-
effects of anthracyclines for up to 5 years after chemother-
apy [22]. Longer follow-up are required to determine the
long-term cardioprotective effects of dexrazozane.

The effectiveness of conventional therapy of chronic heart
failure traditionally based on the use of digitalis, vasodila-
tors, diuretics and beta-blockers is debated. Even if these
drugs can transitorily improve the hemodynamic status of
subjects with AIC, they are not able to prevent cardiac
insufficiency progressing toward more severe forms
requiring cardiac transplantation [23].

http://www.ijponline.net/content/35/1/37

However, recent researches seem to offer new perspectives
for pathogenetic treatment of AIC aimed at blocking the
molecular mechanisms responsible for apoptotic, inflam-
matory and fibrotic phenomena connected to neuro-hor-
monal response causing heart remodelling, this being the
key pathogenetic factor involved in the progression of
chronic heart failure, regardless of its ethiology. Various
treatments include the use of direct antagonists of angi-
otensin (losartan) and endothelin (bosentan), and of
natriuretic peptides, physiologic antagonists of renine-
angiotensine-aldosterone system. But the most promising
seem to be based on the use of anticytokinic substances
(monoclonal antibodies, soluble receptors) in particular
those targeting tumour necrosis factor (INF), or on the
use of other substances that stimulate cardiomyocytes sur-
vival, such as growth factors (GH, IGF-1) and cardio-
trophin, or those avoiding their apoptosis, such as
caspases and metalloproteinases inhibitors [24-27]. These
studies are still fragmentary, and the sometimes conflict-
ing results need to be confirmed by larger clinical trials.
Regarding AIC in particular, recent attention has been
focused on some substances, such as Kinin B1 receptors
(KB1R) antagonists and erythropoietin (Epo), that are

ERITHROPOIETIN (Epo)

Stimulation of myocardial specific
Epo-receptors

l Akt system activation l
Release of antiflogistic Release of antiapoptotic Ossidative stress
cyvtokines factors inhibition
Increased cardiomyocytic
and vascular cells survival
Improved tissue oxygenation
with cardiotrophic effect
Figure 8
Possible mechanism by which erythropoietin is cardioprotective.
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able to module the function of AKT system which poten-
tiates the biochemical signals connected to the survival of
cardiomyiocytes at subcellular level and inhibits the
mechanisms that stimulate apoptosis. Experimental stud-
ies in animals have shown that anthracyclines are capable
of inducing the over expression of KBIR in cardiomyo-
cytes, and this overexpression inhibiting the AKT pathway
determines the appearance of apoptotic and inflamma-
tory phenomena in the cardiac tissues. These negative
effects in mice could be prevented by deleting the KB1R
gene or by stimulating kinin B2 receptors that have a pro-
tective effect on cardiac muscle [28] (Figure 7). Regarding
Epo, it has been shown that this molecule can directly
stimulate the AKT biochemical system inside myocardial
cells, hence promote the release of antiapoptotic, antioxi-
dant and anti-inflammatory factors [29] (Figure 8). The
results of these researches suggest that pharmacological
antagonists of KB1R and Epo might be beneficial in AIC.
Nevertheless, these potential therapeutic strategies have to
be proven in further studies and has to be evaluated
whether pharmacological KB1R antagonists and Epo can
prevent the development of AIC or might even be curative
when administered after the onset of the disease.

On the basis of these considerations, it is likely that in the
near future the better knowledge of the subtle biochemi-
cal mechanisms regulating the function and survival of
cardiac cells and the emerging perspectives of a "molecu-
lar ventricular assistance" connected to the developing
gene therapy of chronic heart failure may allow a more
rational preventive and therapeutic approach to cardiac
insufficiency associated to dilated cardiomyopathies and
therefore revolutionize also the prognosis of AIC [30,31].
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